1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
//===-- MainLoop.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/llvm-config.h"
#include "lldb/Host/MainLoop.h"
#include "lldb/Host/PosixApi.h"
#include "lldb/Utility/Status.h"
#include <algorithm>
#include <cassert>
#include <cerrno>
#include <csignal>
#include <time.h>
#include <vector>
// Multiplexing is implemented using kqueue on systems that support it (BSD
// variants including OSX). On linux we use ppoll, while android uses pselect
// (ppoll is present but not implemented properly). On windows we use WSApoll
// (which does not support signals).
#if HAVE_SYS_EVENT_H
#include <sys/event.h>
#elif defined(_WIN32)
#include <winsock2.h>
#elif defined(__ANDROID__)
#include <sys/syscall.h>
#else
#include <poll.h>
#endif
#ifdef _WIN32
#define POLL WSAPoll
#else
#define POLL poll
#endif
#if SIGNAL_POLLING_UNSUPPORTED
#ifdef _WIN32
typedef int sigset_t;
typedef int siginfo_t;
#endif
int ppoll(struct pollfd *fds, size_t nfds, const struct timespec *timeout_ts,
const sigset_t *) {
int timeout =
(timeout_ts == nullptr)
? -1
: (timeout_ts->tv_sec * 1000 + timeout_ts->tv_nsec / 1000000);
return POLL(fds, nfds, timeout);
}
#endif
using namespace lldb;
using namespace lldb_private;
static sig_atomic_t g_signal_flags[NSIG];
static void SignalHandler(int signo, siginfo_t *info, void *) {
assert(signo < NSIG);
g_signal_flags[signo] = 1;
}
class MainLoop::RunImpl {
public:
RunImpl(MainLoop &loop);
~RunImpl() = default;
Status Poll();
void ProcessEvents();
private:
MainLoop &loop;
#if HAVE_SYS_EVENT_H
std::vector<struct kevent> in_events;
struct kevent out_events[4];
int num_events = -1;
#else
#ifdef __ANDROID__
fd_set read_fd_set;
#else
std::vector<struct pollfd> read_fds;
#endif
sigset_t get_sigmask();
#endif
};
#if HAVE_SYS_EVENT_H
MainLoop::RunImpl::RunImpl(MainLoop &loop) : loop(loop) {
in_events.reserve(loop.m_read_fds.size());
}
Status MainLoop::RunImpl::Poll() {
in_events.resize(loop.m_read_fds.size());
unsigned i = 0;
for (auto &fd : loop.m_read_fds)
EV_SET(&in_events[i++], fd.first, EVFILT_READ, EV_ADD, 0, 0, 0);
num_events = kevent(loop.m_kqueue, in_events.data(), in_events.size(),
out_events, llvm::array_lengthof(out_events), nullptr);
if (num_events < 0)
return Status("kevent() failed with error %d\n", num_events);
return Status();
}
void MainLoop::RunImpl::ProcessEvents() {
assert(num_events >= 0);
for (int i = 0; i < num_events; ++i) {
if (loop.m_terminate_request)
return;
switch (out_events[i].filter) {
case EVFILT_READ:
loop.ProcessReadObject(out_events[i].ident);
break;
case EVFILT_SIGNAL:
loop.ProcessSignal(out_events[i].ident);
break;
default:
llvm_unreachable("Unknown event");
}
}
}
#else
MainLoop::RunImpl::RunImpl(MainLoop &loop) : loop(loop) {
#ifndef __ANDROID__
read_fds.reserve(loop.m_read_fds.size());
#endif
}
sigset_t MainLoop::RunImpl::get_sigmask() {
#if SIGNAL_POLLING_UNSUPPORTED
return 0;
#else
sigset_t sigmask;
int ret = pthread_sigmask(SIG_SETMASK, nullptr, &sigmask);
assert(ret == 0);
(void) ret;
for (const auto &sig : loop.m_signals)
sigdelset(&sigmask, sig.first);
return sigmask;
#endif
}
#ifdef __ANDROID__
Status MainLoop::RunImpl::Poll() {
// ppoll(2) is not supported on older all android versions. Also, older
// versions android (API <= 19) implemented pselect in a non-atomic way, as a
// combination of pthread_sigmask and select. This is not sufficient for us,
// as we rely on the atomicity to correctly implement signal polling, so we
// call the underlying syscall ourselves.
FD_ZERO(&read_fd_set);
int nfds = 0;
for (const auto &fd : loop.m_read_fds) {
FD_SET(fd.first, &read_fd_set);
nfds = std::max(nfds, fd.first + 1);
}
union {
sigset_t set;
uint64_t pad;
} kernel_sigset;
memset(&kernel_sigset, 0, sizeof(kernel_sigset));
kernel_sigset.set = get_sigmask();
struct {
void *sigset_ptr;
size_t sigset_len;
} extra_data = {&kernel_sigset, sizeof(kernel_sigset)};
if (syscall(__NR_pselect6, nfds, &read_fd_set, nullptr, nullptr, nullptr,
&extra_data) == -1 &&
errno != EINTR)
return Status(errno, eErrorTypePOSIX);
return Status();
}
#else
Status MainLoop::RunImpl::Poll() {
read_fds.clear();
sigset_t sigmask = get_sigmask();
for (const auto &fd : loop.m_read_fds) {
struct pollfd pfd;
pfd.fd = fd.first;
pfd.events = POLLIN;
pfd.revents = 0;
read_fds.push_back(pfd);
}
if (ppoll(read_fds.data(), read_fds.size(), nullptr, &sigmask) == -1 &&
errno != EINTR)
return Status(errno, eErrorTypePOSIX);
return Status();
}
#endif
void MainLoop::RunImpl::ProcessEvents() {
#ifdef __ANDROID__
// Collect first all readable file descriptors into a separate vector and
// then iterate over it to invoke callbacks. Iterating directly over
// loop.m_read_fds is not possible because the callbacks can modify the
// container which could invalidate the iterator.
std::vector<IOObject::WaitableHandle> fds;
for (const auto &fd : loop.m_read_fds)
if (FD_ISSET(fd.first, &read_fd_set))
fds.push_back(fd.first);
for (const auto &handle : fds) {
#else
for (const auto &fd : read_fds) {
if ((fd.revents & (POLLIN | POLLHUP)) == 0)
continue;
IOObject::WaitableHandle handle = fd.fd;
#endif
if (loop.m_terminate_request)
return;
loop.ProcessReadObject(handle);
}
std::vector<int> signals;
for (const auto &entry : loop.m_signals)
if (g_signal_flags[entry.first] != 0)
signals.push_back(entry.first);
for (const auto &signal : signals) {
if (loop.m_terminate_request)
return;
g_signal_flags[signal] = 0;
loop.ProcessSignal(signal);
}
}
#endif
MainLoop::MainLoop() {
#if HAVE_SYS_EVENT_H
m_kqueue = kqueue();
assert(m_kqueue >= 0);
#endif
}
MainLoop::~MainLoop() {
#if HAVE_SYS_EVENT_H
close(m_kqueue);
#endif
assert(m_read_fds.size() == 0);
assert(m_signals.size() == 0);
}
MainLoop::ReadHandleUP MainLoop::RegisterReadObject(const IOObjectSP &object_sp,
const Callback &callback,
Status &error) {
#ifdef _WIN32
if (object_sp->GetFdType() != IOObject:: eFDTypeSocket) {
error.SetErrorString("MainLoop: non-socket types unsupported on Windows");
return nullptr;
}
#endif
if (!object_sp || !object_sp->IsValid()) {
error.SetErrorString("IO object is not valid.");
return nullptr;
}
const bool inserted =
m_read_fds.insert({object_sp->GetWaitableHandle(), callback}).second;
if (!inserted) {
error.SetErrorStringWithFormat("File descriptor %d already monitored.",
object_sp->GetWaitableHandle());
return nullptr;
}
return CreateReadHandle(object_sp);
}
// We shall block the signal, then install the signal handler. The signal will
// be unblocked in the Run() function to check for signal delivery.
MainLoop::SignalHandleUP
MainLoop::RegisterSignal(int signo, const Callback &callback, Status &error) {
#ifdef SIGNAL_POLLING_UNSUPPORTED
error.SetErrorString("Signal polling is not supported on this platform.");
return nullptr;
#else
if (m_signals.find(signo) != m_signals.end()) {
error.SetErrorStringWithFormat("Signal %d already monitored.", signo);
return nullptr;
}
SignalInfo info;
info.callback = callback;
struct sigaction new_action;
new_action.sa_sigaction = &SignalHandler;
new_action.sa_flags = SA_SIGINFO;
sigemptyset(&new_action.sa_mask);
sigaddset(&new_action.sa_mask, signo);
sigset_t old_set;
g_signal_flags[signo] = 0;
// Even if using kqueue, the signal handler will still be invoked, so it's
// important to replace it with our "benign" handler.
int ret = sigaction(signo, &new_action, &info.old_action);
assert(ret == 0 && "sigaction failed");
#if HAVE_SYS_EVENT_H
struct kevent ev;
EV_SET(&ev, signo, EVFILT_SIGNAL, EV_ADD, 0, 0, 0);
ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
assert(ret == 0);
#endif
// If we're using kqueue, the signal needs to be unblocked in order to
// receive it. If using pselect/ppoll, we need to block it, and later unblock
// it as a part of the system call.
ret = pthread_sigmask(HAVE_SYS_EVENT_H ? SIG_UNBLOCK : SIG_BLOCK,
&new_action.sa_mask, &old_set);
assert(ret == 0 && "pthread_sigmask failed");
info.was_blocked = sigismember(&old_set, signo);
m_signals.insert({signo, info});
return SignalHandleUP(new SignalHandle(*this, signo));
#endif
}
void MainLoop::UnregisterReadObject(IOObject::WaitableHandle handle) {
bool erased = m_read_fds.erase(handle);
UNUSED_IF_ASSERT_DISABLED(erased);
assert(erased);
}
void MainLoop::UnregisterSignal(int signo) {
#if SIGNAL_POLLING_UNSUPPORTED
Status("Signal polling is not supported on this platform.");
#else
auto it = m_signals.find(signo);
assert(it != m_signals.end());
sigaction(signo, &it->second.old_action, nullptr);
sigset_t set;
sigemptyset(&set);
sigaddset(&set, signo);
int ret = pthread_sigmask(it->second.was_blocked ? SIG_BLOCK : SIG_UNBLOCK,
&set, nullptr);
assert(ret == 0);
(void)ret;
#if HAVE_SYS_EVENT_H
struct kevent ev;
EV_SET(&ev, signo, EVFILT_SIGNAL, EV_DELETE, 0, 0, 0);
ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
assert(ret == 0);
#endif
m_signals.erase(it);
#endif
}
Status MainLoop::Run() {
m_terminate_request = false;
Status error;
RunImpl impl(*this);
// run until termination or until we run out of things to listen to
while (!m_terminate_request && (!m_read_fds.empty() || !m_signals.empty())) {
error = impl.Poll();
if (error.Fail())
return error;
impl.ProcessEvents();
if (m_terminate_request)
return Status();
}
return Status();
}
void MainLoop::ProcessSignal(int signo) {
auto it = m_signals.find(signo);
if (it != m_signals.end())
it->second.callback(*this); // Do the work
}
void MainLoop::ProcessReadObject(IOObject::WaitableHandle handle) {
auto it = m_read_fds.find(handle);
if (it != m_read_fds.end())
it->second(*this); // Do the work
}
|