aboutsummaryrefslogtreecommitdiff
blob: b3540a4fc71bdf1f93ac322d9aadc1d927296c98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
//===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Target/Memory.h"
#include <inttypes.h>
#include "lldb/Core/RangeMap.h"
#include "lldb/Target/Process.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"

using namespace lldb;
using namespace lldb_private;

//----------------------------------------------------------------------
// MemoryCache constructor
//----------------------------------------------------------------------
MemoryCache::MemoryCache(Process &process)
    : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
      m_process(process),
      m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}

//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
MemoryCache::~MemoryCache() {}

void MemoryCache::Clear(bool clear_invalid_ranges) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  m_L1_cache.clear();
  m_L2_cache.clear();
  if (clear_invalid_ranges)
    m_invalid_ranges.Clear();
  m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
}

void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
                                 size_t src_len) {
  AddL1CacheData(
      addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
}

void MemoryCache::AddL1CacheData(lldb::addr_t addr,
                                 const DataBufferSP &data_buffer_sp) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  m_L1_cache[addr] = data_buffer_sp;
}

void MemoryCache::Flush(addr_t addr, size_t size) {
  if (size == 0)
    return;

  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  // Erase any blocks from the L1 cache that intersect with the flush range
  if (!m_L1_cache.empty()) {
    AddrRange flush_range(addr, size);
    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
    if (pos != m_L1_cache.begin()) {
      --pos;
    }
    while (pos != m_L1_cache.end()) {
      AddrRange chunk_range(pos->first, pos->second->GetByteSize());
      if (!chunk_range.DoesIntersect(flush_range))
        break;
      pos = m_L1_cache.erase(pos);
    }
  }

  if (!m_L2_cache.empty()) {
    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
    const addr_t end_addr = (addr + size - 1);
    const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
    const addr_t last_cache_line_addr =
        end_addr - (end_addr % cache_line_byte_size);
    // Watch for overflow where size will cause us to go off the end of the
    // 64 bit address space
    uint32_t num_cache_lines;
    if (last_cache_line_addr >= first_cache_line_addr)
      num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
                         cache_line_byte_size) +
                        1;
    else
      num_cache_lines =
          (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;

    uint32_t cache_idx = 0;
    for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
         curr_addr += cache_line_byte_size, ++cache_idx) {
      BlockMap::iterator pos = m_L2_cache.find(curr_addr);
      if (pos != m_L2_cache.end())
        m_L2_cache.erase(pos);
    }
  }
}

void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
                                  lldb::addr_t byte_size) {
  if (byte_size > 0) {
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
    InvalidRanges::Entry range(base_addr, byte_size);
    m_invalid_ranges.Append(range);
    m_invalid_ranges.Sort();
  }
}

bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
                                     lldb::addr_t byte_size) {
  if (byte_size > 0) {
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
    const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
    if (idx != UINT32_MAX) {
      const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
      if (entry->GetRangeBase() == base_addr &&
          entry->GetByteSize() == byte_size)
        return m_invalid_ranges.RemoveEntrtAtIndex(idx);
    }
  }
  return false;
}

size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
                         Status &error) {
  size_t bytes_left = dst_len;

  // Check the L1 cache for a range that contain the entire memory read. If we
  // find a range in the L1 cache that does, we use it. Else we fall back to
  // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1
  // cache contains chunks of memory that are not required to be
  // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky
  // when reading from them (no partial reads from the L1 cache).

  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  if (!m_L1_cache.empty()) {
    AddrRange read_range(addr, dst_len);
    BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
    if (pos != m_L1_cache.begin()) {
      --pos;
    }
    AddrRange chunk_range(pos->first, pos->second->GetByteSize());
    if (chunk_range.Contains(read_range)) {
      memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(),
             dst_len);
      return dst_len;
    }
  }

  // If this memory read request is larger than the cache line size, then we
  // (1) try to read as much of it at once as possible, and (2) don't add the
  // data to the memory cache.  We don't want to split a big read up into more
  // separate reads than necessary, and with a large memory read request, it is
  // unlikely that the caller function will ask for the next
  // 4 bytes after the large memory read - so there's little benefit to saving
  // it in the cache.
  if (dst && dst_len > m_L2_cache_line_byte_size) {
    size_t bytes_read =
        m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
    // Add this non block sized range to the L1 cache if we actually read
    // anything
    if (bytes_read > 0)
      AddL1CacheData(addr, dst, bytes_read);
    return bytes_read;
  }

  if (dst && bytes_left > 0) {
    const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
    uint8_t *dst_buf = (uint8_t *)dst;
    addr_t curr_addr = addr - (addr % cache_line_byte_size);
    addr_t cache_offset = addr - curr_addr;

    while (bytes_left > 0) {
      if (m_invalid_ranges.FindEntryThatContains(curr_addr)) {
        error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
                                       curr_addr);
        return dst_len - bytes_left;
      }

      BlockMap::const_iterator pos = m_L2_cache.find(curr_addr);
      BlockMap::const_iterator end = m_L2_cache.end();

      if (pos != end) {
        size_t curr_read_size = cache_line_byte_size - cache_offset;
        if (curr_read_size > bytes_left)
          curr_read_size = bytes_left;

        memcpy(dst_buf + dst_len - bytes_left,
               pos->second->GetBytes() + cache_offset, curr_read_size);

        bytes_left -= curr_read_size;
        curr_addr += curr_read_size + cache_offset;
        cache_offset = 0;

        if (bytes_left > 0) {
          // Get sequential cache page hits
          for (++pos; (pos != end) && (bytes_left > 0); ++pos) {
            assert((curr_addr % cache_line_byte_size) == 0);

            if (pos->first != curr_addr)
              break;

            curr_read_size = pos->second->GetByteSize();
            if (curr_read_size > bytes_left)
              curr_read_size = bytes_left;

            memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(),
                   curr_read_size);

            bytes_left -= curr_read_size;
            curr_addr += curr_read_size;

            // We have a cache page that succeeded to read some bytes but not
            // an entire page. If this happens, we must cap off how much data
            // we are able to read...
            if (pos->second->GetByteSize() != cache_line_byte_size)
              return dst_len - bytes_left;
          }
        }
      }

      // We need to read from the process

      if (bytes_left > 0) {
        assert((curr_addr % cache_line_byte_size) == 0);
        std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(
            new DataBufferHeap(cache_line_byte_size, 0));
        size_t process_bytes_read = m_process.ReadMemoryFromInferior(
            curr_addr, data_buffer_heap_ap->GetBytes(),
            data_buffer_heap_ap->GetByteSize(), error);
        if (process_bytes_read == 0)
          return dst_len - bytes_left;

        if (process_bytes_read != cache_line_byte_size)
          data_buffer_heap_ap->SetByteSize(process_bytes_read);
        m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_ap.release());
        // We have read data and put it into the cache, continue through the
        // loop again to get the data out of the cache...
      }
    }
  }

  return dst_len - bytes_left;
}

AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
                               uint32_t permissions, uint32_t chunk_size)
    : m_range(addr, byte_size), m_permissions(permissions),
      m_chunk_size(chunk_size)
{
  // The entire address range is free to start with.
  m_free_blocks.Append(m_range);
  assert(byte_size > chunk_size);
}

AllocatedBlock::~AllocatedBlock() {}

lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
  // We must return something valid for zero bytes.
  if (size == 0)
    size = 1;
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  
  const size_t free_count = m_free_blocks.GetSize();
  for (size_t i=0; i<free_count; ++i)
  {
    auto &free_block = m_free_blocks.GetEntryRef(i);
    const lldb::addr_t range_size = free_block.GetByteSize();
    if (range_size >= size)
    {
      // We found a free block that is big enough for our data. Figure out how
      // many chunks we will need and calculate the resulting block size we
      // will reserve.
      addr_t addr = free_block.GetRangeBase();
      size_t num_chunks = CalculateChunksNeededForSize(size);
      lldb::addr_t block_size = num_chunks * m_chunk_size;
      lldb::addr_t bytes_left = range_size - block_size;
      if (bytes_left == 0)
      {
        // The newly allocated block will take all of the bytes in this
        // available block, so we can just add it to the allocated ranges and
        // remove the range from the free ranges.
        m_reserved_blocks.Insert(free_block, false);
        m_free_blocks.RemoveEntryAtIndex(i);
      }
      else
      {
        // Make the new allocated range and add it to the allocated ranges.
        Range<lldb::addr_t, uint32_t> reserved_block(free_block);
        reserved_block.SetByteSize(block_size);
        // Insert the reserved range and don't combine it with other blocks in
        // the reserved blocks list.
        m_reserved_blocks.Insert(reserved_block, false);
        // Adjust the free range in place since we won't change the sorted
        // ordering of the m_free_blocks list.
        free_block.SetRangeBase(reserved_block.GetRangeEnd());
        free_block.SetByteSize(bytes_left);
      }
      LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
      return addr;
    }
  }

  LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
            LLDB_INVALID_ADDRESS);
  return LLDB_INVALID_ADDRESS;
}

bool AllocatedBlock::FreeBlock(addr_t addr) {
  bool success = false;
  auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
  if (entry_idx != UINT32_MAX)
  {
    m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
    m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
    success = true;
  }
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
  return success;
}

AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
    : m_process(process), m_mutex(), m_memory_map() {}

AllocatedMemoryCache::~AllocatedMemoryCache() {}

void AllocatedMemoryCache::Clear() {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  if (m_process.IsAlive()) {
    PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
    for (pos = m_memory_map.begin(); pos != end; ++pos)
      m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
  }
  m_memory_map.clear();
}

AllocatedMemoryCache::AllocatedBlockSP
AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
                                   uint32_t chunk_size, Status &error) {
  AllocatedBlockSP block_sp;
  const size_t page_size = 4096;
  const size_t num_pages = (byte_size + page_size - 1) / page_size;
  const size_t page_byte_size = num_pages * page_size;

  addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);

  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  if (log) {
    log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
                ", permissions = %s) => 0x%16.16" PRIx64,
                (uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
                (uint64_t)addr);
  }

  if (addr != LLDB_INVALID_ADDRESS) {
    block_sp.reset(
        new AllocatedBlock(addr, page_byte_size, permissions, chunk_size));
    m_memory_map.insert(std::make_pair(permissions, block_sp));
  }
  return block_sp;
}

lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
                                                  uint32_t permissions,
                                                  Status &error) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  addr_t addr = LLDB_INVALID_ADDRESS;
  std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
      range = m_memory_map.equal_range(permissions);

  for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
       ++pos) {
    addr = (*pos).second->ReserveBlock(byte_size);
    if (addr != LLDB_INVALID_ADDRESS)
      break;
  }

  if (addr == LLDB_INVALID_ADDRESS) {
    AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));

    if (block_sp)
      addr = block_sp->ReserveBlock(byte_size);
  }
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  if (log)
    log->Printf(
        "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
        ", permissions = %s) => 0x%16.16" PRIx64,
        (uint32_t)byte_size, GetPermissionsAsCString(permissions),
        (uint64_t)addr);
  return addr;
}

bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
  bool success = false;
  for (pos = m_memory_map.begin(); pos != end; ++pos) {
    if (pos->second->Contains(addr)) {
      success = pos->second->FreeBlock(addr);
      break;
    }
  }
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
  if (log)
    log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
                ") => %i",
                (uint64_t)addr, success);
  return success;
}