1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace LegalizeActions;
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
const GCNTargetMachine &TM) {
using namespace TargetOpcode;
auto GetAddrSpacePtr = [&TM](unsigned AS) {
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
};
const LLT S1 = LLT::scalar(1);
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S512 = LLT::scalar(512);
const LLT V2S16 = LLT::vector(2, 16);
const LLT V4S16 = LLT::vector(4, 16);
const LLT V8S16 = LLT::vector(8, 16);
const LLT V2S32 = LLT::vector(2, 32);
const LLT V3S32 = LLT::vector(3, 32);
const LLT V4S32 = LLT::vector(4, 32);
const LLT V5S32 = LLT::vector(5, 32);
const LLT V6S32 = LLT::vector(6, 32);
const LLT V7S32 = LLT::vector(7, 32);
const LLT V8S32 = LLT::vector(8, 32);
const LLT V9S32 = LLT::vector(9, 32);
const LLT V10S32 = LLT::vector(10, 32);
const LLT V11S32 = LLT::vector(11, 32);
const LLT V12S32 = LLT::vector(12, 32);
const LLT V13S32 = LLT::vector(13, 32);
const LLT V14S32 = LLT::vector(14, 32);
const LLT V15S32 = LLT::vector(15, 32);
const LLT V16S32 = LLT::vector(16, 32);
const LLT V2S64 = LLT::vector(2, 64);
const LLT V3S64 = LLT::vector(3, 64);
const LLT V4S64 = LLT::vector(4, 64);
const LLT V5S64 = LLT::vector(5, 64);
const LLT V6S64 = LLT::vector(6, 64);
const LLT V7S64 = LLT::vector(7, 64);
const LLT V8S64 = LLT::vector(8, 64);
std::initializer_list<LLT> AllS32Vectors =
{V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32};
std::initializer_list<LLT> AllS64Vectors =
{V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64};
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
const LLT CodePtr = FlatPtr;
const LLT AddrSpaces[] = {
GlobalPtr,
ConstantPtr,
LocalPtr,
FlatPtr,
PrivatePtr
};
setAction({G_BRCOND, S1}, Legal);
setAction({G_ADD, S32}, Legal);
setAction({G_ASHR, S32}, Legal);
setAction({G_SUB, S32}, Legal);
setAction({G_MUL, S32}, Legal);
// FIXME: 64-bit ones only legal for scalar
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({S32, S1, S64, V2S32});
getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO,
G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
.legalFor({{S32, S1}});
setAction({G_BITCAST, V2S16}, Legal);
setAction({G_BITCAST, 1, S32}, Legal);
setAction({G_BITCAST, S32}, Legal);
setAction({G_BITCAST, 1, V2S16}, Legal);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64, S16});
// G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that
// can fit in a register.
// FIXME: We need to legalize several more operations before we can add
// a test case for size > 512.
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() <= 512;
})
.clampScalar(0, S1, S512);
// FIXME: i1 operands to intrinsics should always be legal, but other i1
// values may not be legal. We need to figure out how to distinguish
// between these two scenarios.
// FIXME: Pointer types
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({S1, S32, S64, V2S32, V2S16})
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0);
setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
getActionDefinitionsBuilder(
{ G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA})
.legalFor({S32, S64});
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor({{S32, S64}});
// Use actual fsub instruction
setAction({G_FSUB, S32}, Legal);
// Must use fadd + fneg
setAction({G_FSUB, S64}, Lower);
setAction({G_FCMP, S1}, Legal);
setAction({G_FCMP, 1, S32}, Legal);
setAction({G_FCMP, 1, S64}, Legal);
setAction({G_ZEXT, S64}, Legal);
setAction({G_ZEXT, 1, S32}, Legal);
setAction({G_SEXT, S64}, Legal);
setAction({G_SEXT, 1, S32}, Legal);
setAction({G_ANYEXT, S64}, Legal);
setAction({G_ANYEXT, S32}, Legal);
setAction({G_ANYEXT, 1, S32}, Legal);
setAction({G_ANYEXT, 1, S16}, Legal);
setAction({G_FPTOSI, S32}, Legal);
setAction({G_FPTOSI, 1, S32}, Legal);
setAction({G_SITOFP, S32}, Legal);
setAction({G_SITOFP, 1, S32}, Legal);
setAction({G_UITOFP, S32}, Legal);
setAction({G_UITOFP, 1, S32}, Legal);
setAction({G_FPTOUI, S32}, Legal);
setAction({G_FPTOUI, 1, S32}, Legal);
setAction({G_FPOW, S32}, Legal);
setAction({G_FEXP2, S32}, Legal);
setAction({G_FLOG2, S32}, Legal);
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND})
.legalFor({S32, S64});
for (LLT PtrTy : AddrSpaces) {
LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits());
setAction({G_GEP, PtrTy}, Legal);
setAction({G_GEP, 1, IdxTy}, Legal);
}
setAction({G_BLOCK_ADDR, CodePtr}, Legal);
setAction({G_ICMP, S1}, Legal);
setAction({G_ICMP, 1, S32}, Legal);
setAction({G_CTLZ, S32}, Legal);
setAction({G_CTLZ_ZERO_UNDEF, S32}, Legal);
setAction({G_CTTZ, S32}, Legal);
setAction({G_CTTZ_ZERO_UNDEF, S32}, Legal);
setAction({G_BSWAP, S32}, Legal);
setAction({G_CTPOP, S32}, Legal);
getActionDefinitionsBuilder(G_INTTOPTR)
.legalIf([](const LegalityQuery &Query) {
return true;
});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalIf([](const LegalityQuery &Query) {
return true;
});
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.legalIf([=, &ST](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
// TODO: Decompose private loads into 4-byte components.
// TODO: Illegal flat loads on SI
switch (Ty0.getSizeInBits()) {
case 32:
case 64:
case 128:
return true;
case 96:
// XXX hasLoadX3
return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS);
case 256:
case 512:
// TODO: constant loads
default:
return false;
}
});
auto &Atomics = getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
.legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
{S64, GlobalPtr}, {S64, LocalPtr}});
if (ST.hasFlatAddressSpace()) {
Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
}
// TODO: Pointer types, any 32-bit or 64-bit vector
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{S32, S1}, {S64, S1}, {V2S32, S1}, {V2S16, S1}})
.clampScalar(0, S32, S64);
setAction({G_SHL, S32}, Legal);
// FIXME: When RegBankSelect inserts copies, it will only create new
// registers with scalar types. This means we can end up with
// G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer
// operands. In assert builds, the instruction selector will assert
// if it sees a generic instruction which isn't legal, so we need to
// tell it that scalar types are legal for pointer operands
setAction({G_GEP, S64}, Legal);
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &VecTy = Query.Types[1];
const LLT &IdxTy = Query.Types[2];
return VecTy.getSizeInBits() % 32 == 0 &&
VecTy.getSizeInBits() <= 512 &&
IdxTy.getSizeInBits() == 32;
});
}
// FIXME: Doesn't handle extract of illegal sizes.
getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
return (Ty0.getSizeInBits() % 32 == 0) &&
(Ty1.getSizeInBits() % 32 == 0);
});
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.legalForCartesianProduct(AllS32Vectors, {S32})
.legalForCartesianProduct(AllS64Vectors, {S64})
.clampNumElements(0, V16S32, V16S32)
.clampNumElements(0, V2S64, V8S64)
.minScalarSameAs(1, 0);
// TODO: Support any combination of v2s32
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor({{V4S32, V2S32},
{V8S32, V2S32},
{V8S32, V4S32},
{V4S64, V2S64},
{V4S16, V2S16},
{V8S16, V2S16},
{V8S16, V4S16}});
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
return BigTy.getSizeInBits() % 32 == 0 &&
LitTy.getSizeInBits() % 32 == 0 &&
BigTy.getSizeInBits() <= 512;
})
// Any vectors left are the wrong size. Scalarize them.
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
0, Query.Types[0].getElementType());
})
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
1, Query.Types[1].getElementType());
});
}
computeTables();
verify(*ST.getInstrInfo());
}
|