aboutsummaryrefslogtreecommitdiff
blob: 058225c0d812892cf234ed1c2cdddcea5c99cd42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//===- BitTracker.h ---------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
#define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <queue>
#include <set>
#include <utility>

namespace llvm {

class BitVector;
class ConstantInt;
class MachineRegisterInfo;
class MachineBasicBlock;
class MachineFunction;
class raw_ostream;
class TargetRegisterClass;
class TargetRegisterInfo;

struct BitTracker {
  struct BitRef;
  struct RegisterRef;
  struct BitValue;
  struct BitMask;
  struct RegisterCell;
  struct MachineEvaluator;

  using BranchTargetList = SetVector<const MachineBasicBlock *>;
  using CellMapType = std::map<unsigned, RegisterCell>;

  BitTracker(const MachineEvaluator &E, MachineFunction &F);
  ~BitTracker();

  void run();
  void trace(bool On = false) { Trace = On; }
  bool has(unsigned Reg) const;
  const RegisterCell &lookup(unsigned Reg) const;
  RegisterCell get(RegisterRef RR) const;
  void put(RegisterRef RR, const RegisterCell &RC);
  void subst(RegisterRef OldRR, RegisterRef NewRR);
  bool reached(const MachineBasicBlock *B) const;
  void visit(const MachineInstr &MI);

  void print_cells(raw_ostream &OS) const;

private:
  void visitPHI(const MachineInstr &PI);
  void visitNonBranch(const MachineInstr &MI);
  void visitBranchesFrom(const MachineInstr &BI);
  void visitUsesOf(unsigned Reg);

  using CFGEdge = std::pair<int, int>;
  using EdgeSetType = std::set<CFGEdge>;
  using InstrSetType = std::set<const MachineInstr *>;
  using EdgeQueueType = std::queue<CFGEdge>;

  // Priority queue of instructions using modified registers, ordered by
  // their relative position in a basic block.
  struct UseQueueType {
    UseQueueType() : Uses(Dist) {}

    unsigned size() const {
      return Uses.size();
    }
    bool empty() const {
      return size() == 0;
    }
    MachineInstr *front() const {
      return Uses.top();
    }
    void push(MachineInstr *MI) {
      if (Set.insert(MI).second)
        Uses.push(MI);
    }
    void pop() {
      Set.erase(front());
      Uses.pop();
    }
    void reset() {
      Dist.clear();
    }
  private:
    struct Cmp {
      Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
      bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
      DenseMap<const MachineInstr*,unsigned> &Dist;
    };
    std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
    DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
    DenseMap<const MachineInstr*,unsigned> Dist;
  };

  void reset();
  void runEdgeQueue(BitVector &BlockScanned);
  void runUseQueue();

  const MachineEvaluator &ME;
  MachineFunction &MF;
  MachineRegisterInfo &MRI;
  CellMapType &Map;

  EdgeSetType EdgeExec;         // Executable flow graph edges.
  InstrSetType InstrExec;       // Executable instructions.
  UseQueueType UseQ;            // Work queue of register uses.
  EdgeQueueType FlowQ;          // Work queue of CFG edges.
  DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
  bool Trace;                   // Enable tracing for debugging.
};

// Abstraction of a reference to bit at position Pos from a register Reg.
struct BitTracker::BitRef {
  BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}

  bool operator== (const BitRef &BR) const {
    // If Reg is 0, disregard Pos.
    return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
  }

  unsigned Reg;
  uint16_t Pos;
};

// Abstraction of a register reference in MachineOperand.  It contains the
// register number and the subregister index.
struct BitTracker::RegisterRef {
  RegisterRef(unsigned R = 0, unsigned S = 0)
    : Reg(R), Sub(S) {}
  RegisterRef(const MachineOperand &MO)
      : Reg(MO.getReg()), Sub(MO.getSubReg()) {}

  unsigned Reg, Sub;
};

// Value that a single bit can take.  This is outside of the context of
// any register, it is more of an abstraction of the two-element set of
// possible bit values.  One extension here is the "Ref" type, which
// indicates that this bit takes the same value as the bit described by
// RefInfo.
struct BitTracker::BitValue {
  enum ValueType {
    Top,    // Bit not yet defined.
    Zero,   // Bit = 0.
    One,    // Bit = 1.
    Ref     // Bit value same as the one described in RefI.
    // Conceptually, there is no explicit "bottom" value: the lattice's
    // bottom will be expressed as a "ref to itself", which, in the context
    // of registers, could be read as "this value of this bit is defined by
    // this bit".
    // The ordering is:
    //   x <= Top,
    //   Self <= x, where "Self" is "ref to itself".
    // This makes the value lattice different for each virtual register
    // (even for each bit in the same virtual register), since the "bottom"
    // for one register will be a simple "ref" for another register.
    // Since we do not store the "Self" bit and register number, the meet
    // operation will need to take it as a parameter.
    //
    // In practice there is a special case for values that are not associa-
    // ted with any specific virtual register. An example would be a value
    // corresponding to a bit of a physical register, or an intermediate
    // value obtained in some computation (such as instruction evaluation).
    // Such cases are identical to the usual Ref type, but the register
    // number is 0. In such case the Pos field of the reference is ignored.
    //
    // What is worthy of notice is that in value V (that is a "ref"), as long
    // as the RefI.Reg is not 0, it may actually be the same register as the
    // one in which V will be contained.  If the RefI.Pos refers to the posi-
    // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
    // otherwise V is taken to be identical to the referenced bit of the
    // same register.
    // If RefI.Reg is 0, however, such a reference to the same register is
    // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
    // is treated as "bottom".
  };
  ValueType Type;
  BitRef RefI;

  BitValue(ValueType T = Top) : Type(T) {}
  BitValue(bool B) : Type(B ? One : Zero) {}
  BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}

  bool operator== (const BitValue &V) const {
    if (Type != V.Type)
      return false;
    if (Type == Ref && !(RefI == V.RefI))
      return false;
    return true;
  }
  bool operator!= (const BitValue &V) const {
    return !operator==(V);
  }

  bool is(unsigned T) const {
    assert(T == 0 || T == 1);
    return T == 0 ? Type == Zero
                  : (T == 1 ? Type == One : false);
  }

  // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
  // (1)  x.x = x
  // (2)  x.y = y.x
  // (3)  x.(y.z) = (x.y).z
  // (4)  x.T = x  (i.e. T = "top")
  // (5)  x.B = B  (i.e. B = "bottom")
  //
  // This "meet" function will update the value of the "*this" object with
  // the newly calculated one, and return "true" if the value of *this has
  // changed, and "false" otherwise.
  // To prove that it satisfies the conditions (1)-(5), it is sufficient
  // to show that a relation
  //   x <= y  <=>  x.y = x
  // defines a partial order (i.e. that "meet" is same as "infimum").
  bool meet(const BitValue &V, const BitRef &Self) {
    // First, check the cases where there is nothing to be done.
    if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
      return false;
    if (V.Type == Top)                  // This.meet(Top) = This
      return false;
    if (*this == V)                     // This.meet(This) = This
      return false;

    // At this point, we know that the value of "this" will change.
    // If it is Top, it will become the same as V, otherwise it will
    // become "bottom" (i.e. Self).
    if (Type == Top) {
      Type = V.Type;
      RefI = V.RefI;  // This may be irrelevant, but copy anyway.
      return true;
    }
    // Become "bottom".
    Type = Ref;
    RefI = Self;
    return true;
  }

  // Create a reference to the bit value V.
  static BitValue ref(const BitValue &V);
  // Create a "self".
  static BitValue self(const BitRef &Self = BitRef());

  bool num() const {
    return Type == Zero || Type == One;
  }

  operator bool() const {
    assert(Type == Zero || Type == One);
    return Type == One;
  }

  friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
};

// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
inline BitTracker::BitValue
BitTracker::BitValue::ref(const BitValue &V) {
  if (V.Type != Ref)
    return BitValue(V.Type);
  if (V.RefI.Reg != 0)
    return BitValue(V.RefI.Reg, V.RefI.Pos);
  return self();
}

inline BitTracker::BitValue
BitTracker::BitValue::self(const BitRef &Self) {
  return BitValue(Self.Reg, Self.Pos);
}

// A sequence of bits starting from index B up to and including index E.
// If E < B, the mask represents two sections: [0..E] and [B..W) where
// W is the width of the register.
struct BitTracker::BitMask {
  BitMask() = default;
  BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}

  uint16_t first() const { return B; }
  uint16_t last() const { return E; }

private:
  uint16_t B = 0;
  uint16_t E = 0;
};

// Representation of a register: a list of BitValues.
struct BitTracker::RegisterCell {
  RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}

  uint16_t width() const {
    return Bits.size();
  }

  const BitValue &operator[](uint16_t BitN) const {
    assert(BitN < Bits.size());
    return Bits[BitN];
  }
  BitValue &operator[](uint16_t BitN) {
    assert(BitN < Bits.size());
    return Bits[BitN];
  }

  bool meet(const RegisterCell &RC, unsigned SelfR);
  RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
  RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
  RegisterCell &rol(uint16_t Sh);    // Rotate left.
  RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
  RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
  uint16_t cl(bool B) const;
  uint16_t ct(bool B) const;

  bool operator== (const RegisterCell &RC) const;
  bool operator!= (const RegisterCell &RC) const {
    return !operator==(RC);
  }

  // Replace the ref-to-reg-0 bit values with the given register.
  RegisterCell &regify(unsigned R);

  // Generate a "ref" cell for the corresponding register. In the resulting
  // cell each bit will be described as being the same as the corresponding
  // bit in register Reg (i.e. the cell is "defined" by register Reg).
  static RegisterCell self(unsigned Reg, uint16_t Width);
  // Generate a "top" cell of given size.
  static RegisterCell top(uint16_t Width);
  // Generate a cell that is a "ref" to another cell.
  static RegisterCell ref(const RegisterCell &C);

private:
  // The DefaultBitN is here only to avoid frequent reallocation of the
  // memory in the vector.
  static const unsigned DefaultBitN = 32;
  using BitValueList = SmallVector<BitValue, DefaultBitN>;
  BitValueList Bits;

  friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
};

inline bool BitTracker::has(unsigned Reg) const {
  return Map.find(Reg) != Map.end();
}

inline const BitTracker::RegisterCell&
BitTracker::lookup(unsigned Reg) const {
  CellMapType::const_iterator F = Map.find(Reg);
  assert(F != Map.end());
  return F->second;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
  RegisterCell RC(Width);
  for (uint16_t i = 0; i < Width; ++i)
    RC.Bits[i] = BitValue::self(BitRef(Reg, i));
  return RC;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::top(uint16_t Width) {
  RegisterCell RC(Width);
  for (uint16_t i = 0; i < Width; ++i)
    RC.Bits[i] = BitValue(BitValue::Top);
  return RC;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::ref(const RegisterCell &C) {
  uint16_t W = C.width();
  RegisterCell RC(W);
  for (unsigned i = 0; i < W; ++i)
    RC[i] = BitValue::ref(C[i]);
  return RC;
}

// A class to evaluate target's instructions and update the cell maps.
// This is used internally by the bit tracker.  A target that wants to
// utilize this should implement the evaluation functions (noted below)
// in a subclass of this class.
struct BitTracker::MachineEvaluator {
  MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
      : TRI(T), MRI(M) {}
  virtual ~MachineEvaluator() = default;

  uint16_t getRegBitWidth(const RegisterRef &RR) const;

  RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
  void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;

  // A result of any operation should use refs to the source cells, not
  // the cells directly. This function is a convenience wrapper to quickly
  // generate a ref for a cell corresponding to a register reference.
  RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
    RegisterCell RC = getCell(RR, M);
    return RegisterCell::ref(RC);
  }

  // Helper functions.
  // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
  bool isInt(const RegisterCell &A) const;
  // Convert cell to an immediate value.
  uint64_t toInt(const RegisterCell &A) const;

  // Generate cell from an immediate value.
  RegisterCell eIMM(int64_t V, uint16_t W) const;
  RegisterCell eIMM(const ConstantInt *CI) const;

  // Arithmetic.
  RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;

  // Shifts.
  RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
  RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
  RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;

  // Logical.
  RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eNOT(const RegisterCell &A1) const;

  // Set bit, clear bit.
  RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
  RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;

  // Count leading/trailing bits (zeros/ones).
  RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
  RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;

  // Sign/zero extension.
  RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
  RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;

  // Extract/insert
  // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
  // INS R,S,b:  take R and replace bits starting from b with S.
  RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
  RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
                    uint16_t AtN) const;

  // User-provided functions for individual targets:

  // Return a sub-register mask that indicates which bits in Reg belong
  // to the subregister Sub. These bits are assumed to be contiguous in
  // the super-register, and have the same ordering in the sub-register
  // as in the super-register. It is valid to call this function with
  // Sub == 0, in this case, the function should return a mask that spans
  // the entire register Reg (which is what the default implementation
  // does).
  virtual BitMask mask(unsigned Reg, unsigned Sub) const;
  // Indicate whether a given register class should be tracked.
  virtual bool track(const TargetRegisterClass *RC) const { return true; }
  // Evaluate a non-branching machine instruction, given the cell map with
  // the input values. Place the results in the Outputs map. Return "true"
  // if evaluation succeeded, "false" otherwise.
  virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
                        CellMapType &Outputs) const;
  // Evaluate a branch, given the cell map with the input values. Fill out
  // a list of all possible branch targets and indicate (through a flag)
  // whether the branch could fall-through. Return "true" if this information
  // has been successfully computed, "false" otherwise.
  virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
                        BranchTargetList &Targets, bool &FallsThru) const = 0;
  // Given a register class RC, return a register class that should be assumed
  // when a register from class RC is used with a subregister of index Idx.
  virtual const TargetRegisterClass&
  composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
    if (Idx == 0)
      return RC;
    llvm_unreachable("Unimplemented composeWithSubRegIndex");
  }
  // Return the size in bits of the physical register Reg.
  virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;

  const TargetRegisterInfo &TRI;
  MachineRegisterInfo &MRI;
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H