1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
|
//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the Hexagon target.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonISelDAGToDAG.h"
#include "HexagonISelLowering.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonTargetMachine.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-isel"
static
cl::opt<bool>
EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
cl::desc("Rebalance address calculation trees to improve "
"instruction selection"));
// Rebalance only if this allows e.g. combining a GA with an offset or
// factoring out a shift.
static
cl::opt<bool>
RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
cl::desc("Rebalance address tree only if this allows optimizations"));
static
cl::opt<bool>
RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
#define GET_DAGISEL_BODY HexagonDAGToDAGISel
#include "HexagonGenDAGISel.inc"
/// createHexagonISelDag - This pass converts a legalized DAG into a
/// Hexagon-specific DAG, ready for instruction scheduling.
///
namespace llvm {
FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new HexagonDAGToDAGISel(TM, OptLevel);
}
}
void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
EVT LoadedVT = LD->getMemoryVT();
unsigned Opcode = 0;
// Check for zero extended loads. Treat any-extend loads as zero extended
// loads.
ISD::LoadExtType ExtType = LD->getExtensionType();
bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
assert(LoadedVT.isSimple());
switch (LoadedVT.getSimpleVT().SimpleTy) {
case MVT::i8:
if (IsZeroExt)
Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
else
Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
break;
case MVT::i16:
if (IsZeroExt)
Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
else
Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
break;
case MVT::i32:
case MVT::f32:
case MVT::v2i16:
case MVT::v4i8:
Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
break;
case MVT::i64:
case MVT::f64:
case MVT::v2i32:
case MVT::v4i16:
case MVT::v8i8:
Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
break;
case MVT::v64i8:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v8i64:
case MVT::v128i8:
case MVT::v64i16:
case MVT::v32i32:
case MVT::v16i64:
if (isAlignedMemNode(LD)) {
if (LD->isNonTemporal())
Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
else
Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
} else {
Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
}
break;
default:
llvm_unreachable("Unexpected memory type in indexed load");
}
SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
MachineMemOperand *MemOp = LD->getMemOperand();
auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
-> MachineSDNode* {
if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
Zero, SDValue(N, 0));
}
if (ExtType == ISD::SEXTLOAD)
return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
SDValue(N, 0));
return N;
};
// Loaded value Next address Chain
SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
SDValue To[3];
EVT ValueVT = LD->getValueType(0);
if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
// A load extending to i64 will actually produce i32, which will then
// need to be extended to i64.
assert(LoadedVT.getSizeInBits() <= 32);
ValueVT = MVT::i32;
}
if (IsValidInc) {
MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
MVT::i32, MVT::Other, Base,
IncV, Chain);
CurDAG->setNodeMemRefs(L, {MemOp});
To[1] = SDValue(L, 1); // Next address.
To[2] = SDValue(L, 2); // Chain.
// Handle special case for extension to i64.
if (LD->getValueType(0) == MVT::i64)
L = getExt64(L, dl);
To[0] = SDValue(L, 0); // Loaded (extended) value.
} else {
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
Base, Zero, Chain);
CurDAG->setNodeMemRefs(L, {MemOp});
To[2] = SDValue(L, 1); // Chain.
MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, IncV);
To[1] = SDValue(A, 0); // Next address.
// Handle special case for extension to i64.
if (LD->getValueType(0) == MVT::i64)
L = getExt64(L, dl);
To[0] = SDValue(L, 0); // Loaded (extended) value.
}
ReplaceUses(From, To, 3);
CurDAG->RemoveDeadNode(LD);
}
MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return nullptr;
SDLoc dl(IntN);
unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
static std::map<unsigned,unsigned> LoadPciMap = {
{ Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
{ Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
{ Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
{ Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
{ Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
{ Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
};
auto FLC = LoadPciMap.find(IntNo);
if (FLC != LoadPciMap.end()) {
EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
// Operands: { Base, Increment, Modifier, Chain }
auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
{ IntN->getOperand(2), I, IntN->getOperand(4),
IntN->getOperand(0) });
return Res;
}
return nullptr;
}
SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
SDNode *IntN) {
// The "LoadN" is just a machine load instruction. The intrinsic also
// involves storing it. Generate an appropriate store to the location
// given in the intrinsic's operand(3).
uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
HexagonII::MemAccesSizeMask;
unsigned Size = 1U << (SizeBits-1);
SDLoc dl(IntN);
MachinePointerInfo PI;
SDValue TS;
SDValue Loc = IntN->getOperand(3);
if (Size >= 4)
TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
Size);
else
TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
PI, MVT::getIntegerVT(Size * 8), Size);
SDNode *StoreN;
{
HandleSDNode Handle(TS);
SelectStore(TS.getNode());
StoreN = Handle.getValue().getNode();
}
// Load's results are { Loaded value, Updated pointer, Chain }
ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
return StoreN;
}
bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
// The intrinsics for load circ/brev perform two operations:
// 1. Load a value V from the specified location, using the addressing
// mode corresponding to the intrinsic.
// 2. Store V into a specified location. This location is typically a
// local, temporary object.
// In many cases, the program using these intrinsics will immediately
// load V again from the local object. In those cases, when certain
// conditions are met, the last load can be removed.
// This function identifies and optimizes this pattern. If the pattern
// cannot be optimized, it returns nullptr, which will cause the load
// to be selected separately from the intrinsic (which will be handled
// in SelectIntrinsicWChain).
SDValue Ch = N->getOperand(0);
SDValue Loc = N->getOperand(1);
// Assume that the load and the intrinsic are connected directly with a
// chain:
// t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
// t2: i32,ch = load t1:1, Loc, ...
SDNode *C = Ch.getNode();
if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
// The second load can only be eliminated if its extension type matches
// that of the load instruction corresponding to the intrinsic. The user
// can provide an address of an unsigned variable to store the result of
// a sign-extending intrinsic into (or the other way around).
ISD::LoadExtType IntExt;
switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
case Intrinsic::hexagon_circ_ldub:
case Intrinsic::hexagon_circ_lduh:
IntExt = ISD::ZEXTLOAD;
break;
case Intrinsic::hexagon_circ_ldw:
case Intrinsic::hexagon_circ_ldd:
IntExt = ISD::NON_EXTLOAD;
break;
default:
IntExt = ISD::SEXTLOAD;
break;
}
if (N->getExtensionType() != IntExt)
return false;
// Make sure the target location for the loaded value in the load intrinsic
// is the location from which LD (or N) is loading.
if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
return false;
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
SDNode *S = StoreInstrForLoadIntrinsic(L, C);
SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
ReplaceUses(F, T, array_lengthof(T));
// This transformation will leave the intrinsic dead. If it remains in
// the DAG, the selection code will see it again, but without the load,
// and it will generate a store that is normally required for it.
CurDAG->RemoveDeadNode(C);
return true;
}
return false;
}
// Convert the bit-reverse load intrinsic to appropriate target instruction.
bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
const SDLoc &dl(IntN);
unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
static const std::map<unsigned, unsigned> LoadBrevMap = {
{ Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
{ Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
{ Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
{ Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
{ Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
{ Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
};
auto FLI = LoadBrevMap.find(IntNo);
if (FLI != LoadBrevMap.end()) {
EVT ValTy =
(IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
// Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
// modifier}.
// Operands of target instruction: { Base, Modifier, Chain }.
MachineSDNode *Res = CurDAG->getMachineNode(
FLI->second, dl, RTys,
{IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
CurDAG->setNodeMemRefs(Res, {MemOp});
ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
CurDAG->RemoveDeadNode(IntN);
return true;
}
return false;
}
/// Generate a machine instruction node for the new circlar buffer intrinsics.
/// The new versions use a CSx register instead of the K field.
bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
SDLoc DL(IntN);
unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
SmallVector<SDValue, 7> Ops;
static std::map<unsigned,unsigned> LoadNPcMap = {
{ Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
{ Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
{ Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
{ Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
{ Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
{ Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
{ Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
{ Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
{ Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
{ Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
{ Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
{ Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
};
auto FLI = LoadNPcMap.find (IntNo);
if (FLI != LoadNPcMap.end()) {
EVT ValTy = MVT::i32;
if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
ValTy = MVT::i64;
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
// Handle load.*_pci case which has 6 operands.
if (IntN->getNumOperands() == 6) {
auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
// Operands: { Base, Increment, Modifier, Start, Chain }.
Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
IntN->getOperand(0) };
} else
// Handle load.*_pcr case which has 5 operands.
// Operands: { Base, Modifier, Start, Chain }.
Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
IntN->getOperand(0) };
MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
CurDAG->RemoveDeadNode(IntN);
return true;
}
static std::map<unsigned,unsigned> StoreNPcMap = {
{ Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
{ Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
{ Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
{ Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
{ Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
{ Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
{ Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
{ Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
{ Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
{ Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
};
auto FSI = StoreNPcMap.find (IntNo);
if (FSI != StoreNPcMap.end()) {
EVT RTys[] = { MVT::i32, MVT::Other };
// Handle store.*_pci case which has 7 operands.
if (IntN->getNumOperands() == 7) {
auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
// Operands: { Base, Increment, Modifier, Value, Start, Chain }.
Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
IntN->getOperand(6), IntN->getOperand(0) };
} else
// Handle store.*_pcr case which has 6 operands.
// Operands: { Base, Modifier, Value, Start, Chain }.
Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
IntN->getOperand(5), IntN->getOperand(0) };
MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
CurDAG->RemoveDeadNode(IntN);
return true;
}
return false;
}
void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
// Handle indexed loads.
ISD::MemIndexedMode AM = LD->getAddressingMode();
if (AM != ISD::UNINDEXED) {
SelectIndexedLoad(LD, dl);
return;
}
// Handle patterns using circ/brev load intrinsics.
if (tryLoadOfLoadIntrinsic(LD))
return;
SelectCode(LD);
}
void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
SDValue Chain = ST->getChain();
SDValue Base = ST->getBasePtr();
SDValue Offset = ST->getOffset();
SDValue Value = ST->getValue();
// Get the constant value.
int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
EVT StoredVT = ST->getMemoryVT();
EVT ValueVT = Value.getValueType();
bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
unsigned Opcode = 0;
assert(StoredVT.isSimple());
switch (StoredVT.getSimpleVT().SimpleTy) {
case MVT::i8:
Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
break;
case MVT::i16:
Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
break;
case MVT::i32:
case MVT::f32:
case MVT::v2i16:
case MVT::v4i8:
Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
break;
case MVT::i64:
case MVT::f64:
case MVT::v2i32:
case MVT::v4i16:
case MVT::v8i8:
Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
break;
case MVT::v64i8:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v8i64:
case MVT::v128i8:
case MVT::v64i16:
case MVT::v32i32:
case MVT::v16i64:
if (isAlignedMemNode(ST)) {
if (ST->isNonTemporal())
Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
else
Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
} else {
Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
}
break;
default:
llvm_unreachable("Unexpected memory type in indexed store");
}
if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
dl, MVT::i32, Value);
}
SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
MachineMemOperand *MemOp = ST->getMemOperand();
// Next address Chain
SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
SDValue To[2];
if (IsValidInc) {
// Build post increment store.
SDValue Ops[] = { Base, IncV, Value, Chain };
MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
Ops);
CurDAG->setNodeMemRefs(S, {MemOp});
To[0] = SDValue(S, 0);
To[1] = SDValue(S, 1);
} else {
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDValue Ops[] = { Base, Zero, Value, Chain };
MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
CurDAG->setNodeMemRefs(S, {MemOp});
To[1] = SDValue(S, 0);
MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, IncV);
To[0] = SDValue(A, 0);
}
ReplaceUses(From, To, 2);
CurDAG->RemoveDeadNode(ST);
}
void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
SDLoc dl(N);
StoreSDNode *ST = cast<StoreSDNode>(N);
// Handle indexed stores.
ISD::MemIndexedMode AM = ST->getAddressingMode();
if (AM != ISD::UNINDEXED) {
SelectIndexedStore(ST, dl);
return;
}
SelectCode(ST);
}
void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
SDLoc dl(N);
SDValue Shl_0 = N->getOperand(0);
SDValue Shl_1 = N->getOperand(1);
auto Default = [this,N] () -> void { SelectCode(N); };
if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
return Default();
// RHS is const.
int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
if (Shl_0.getOpcode() == ISD::MUL) {
SDValue Mul_0 = Shl_0.getOperand(0); // Val
SDValue Mul_1 = Shl_0.getOperand(1); // Const
// RHS of mul is const.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
int32_t ValConst = C->getSExtValue() << ShlConst;
if (isInt<9>(ValConst)) {
SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
MVT::i32, Mul_0, Val);
ReplaceNode(N, Result);
return;
}
}
return Default();
}
if (Shl_0.getOpcode() == ISD::SUB) {
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
SDValue Sub_1 = Shl_0.getOperand(1); // Val
if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
return Default();
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
if (isInt<9>(-ValConst)) {
SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
MVT::i32, Shl2_0, Val);
ReplaceNode(N, Result);
return;
}
}
}
}
return Default();
}
//
// Handling intrinsics for circular load and bitreverse load.
//
void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
StoreInstrForLoadIntrinsic(L, N);
CurDAG->RemoveDeadNode(N);
return;
}
// Handle bit-reverse load intrinsics.
if (SelectBrevLdIntrinsic(N))
return;
if (SelectNewCircIntrinsic(N))
return;
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
IntNo == Intrinsic::hexagon_V6_vgathermh ||
IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
IntNo == Intrinsic::hexagon_V6_vgathermhw ||
IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
SelectV65Gather(N);
return;
}
if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
IntNo == Intrinsic::hexagon_V6_vgathermhq ||
IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
SelectV65GatherPred(N);
return;
}
SelectCode(N);
}
void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Bits;
switch (IID) {
case Intrinsic::hexagon_S2_vsplatrb:
Bits = 8;
break;
case Intrinsic::hexagon_S2_vsplatrh:
Bits = 16;
break;
case Intrinsic::hexagon_V6_vaddcarry:
case Intrinsic::hexagon_V6_vaddcarry_128B:
case Intrinsic::hexagon_V6_vsubcarry:
case Intrinsic::hexagon_V6_vsubcarry_128B:
SelectHVXDualOutput(N);
return;
default:
SelectCode(N);
return;
}
SDValue V = N->getOperand(1);
SDValue U;
if (keepsLowBits(V, Bits, U)) {
SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
N->getOperand(0), U);
ReplaceNode(N, R.getNode());
SelectCode(R.getNode());
return;
}
SelectCode(N);
}
//
// Map floating point constant values.
//
void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
SDLoc dl(N);
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
APInt A = CN->getValueAPF().bitcastToAPInt();
if (N->getValueType(0) == MVT::f32) {
SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
return;
}
if (N->getValueType(0) == MVT::f64) {
SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
return;
}
SelectCode(N);
}
//
// Map boolean values.
//
void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
if (N->getValueType(0) == MVT::i1) {
assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
? Hexagon::PS_true
: Hexagon::PS_false;
ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
return;
}
SelectCode(N);
}
void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
MachineFrameInfo &MFI = MF->getFrameInfo();
const HexagonFrameLowering *HFI = HST->getFrameLowering();
int FX = cast<FrameIndexSDNode>(N)->getIndex();
unsigned StkA = HFI->getStackAlignment();
unsigned MaxA = MFI.getMaxAlignment();
SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
SDLoc DL(N);
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
SDNode *R = nullptr;
// Use PS_fi when:
// - the object is fixed, or
// - there are no objects with higher-than-default alignment, or
// - there are no dynamically allocated objects.
// Otherwise, use PS_fia.
if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
} else {
auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
unsigned AR = HMFI.getStackAlignBaseVReg();
SDValue CH = CurDAG->getEntryNode();
SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
}
ReplaceNode(N, R);
}
void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
: Hexagon::A4_subp_c;
SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
{ N->getOperand(0), N->getOperand(1),
N->getOperand(2) });
ReplaceNode(N, C);
}
void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
MVT ResTy = N->getValueType(0).getSimpleVT();
if (HST->isHVXVectorType(ResTy, true))
return SelectHvxVAlign(N);
const SDLoc &dl(N);
unsigned VecLen = ResTy.getSizeInBits();
if (VecLen == 32) {
SDValue Ops[] = {
CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
N->getOperand(0),
CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
N->getOperand(1),
CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
};
SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
MVT::i64, Ops);
// Shift right by "(Addr & 0x3) * 8" bytes.
SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
M0, N->getOperand(2), M1);
SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
SDValue(R, 0), SDValue(C, 0));
SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
SDValue(S, 0));
ReplaceNode(N, E.getNode());
} else {
assert(VecLen == 64);
SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
N->getOperand(2));
SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
N->getOperand(0), N->getOperand(1),
SDValue(Pu,0));
ReplaceNode(N, VA);
}
}
void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
const SDLoc &dl(N);
SDValue A = N->getOperand(1);
int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
assert(isPowerOf2_32(-Mask));
SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
N->getOperand(0), M);
ReplaceNode(N, AA);
}
// Handle these nodes here to avoid having to write patterns for all
// combinations of input/output types. In all cases, the resulting
// instruction is the same.
void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
SDValue Op = N->getOperand(0);
MVT OpTy = Op.getValueType().getSimpleVT();
SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
CurDAG->getVTList(OpTy), {Op});
ReplaceNode(T, Op.getNode());
}
void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
MVT ResTy = N->getValueType(0).getSimpleVT();
SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
N->getOperand(0));
ReplaceNode(N, T);
}
void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
const SDLoc &dl(N);
MVT ResTy = N->getValueType(0).getSimpleVT();
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
N->getOperand(0), Zero);
ReplaceNode(N, T);
}
void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
const SDLoc &dl(N);
MVT ResTy = N->getValueType(0).getSimpleVT();
SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
N->getOperand(0), SDValue(R,0));
ReplaceNode(N, T);
}
void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
const SDLoc &dl(N);
MVT ResTy = N->getValueType(0).getSimpleVT();
SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
N->getOperand(0), SDValue(R,0));
ReplaceNode(N, T);
}
void HexagonDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode())
return N->setNodeId(-1); // Already selected.
switch (N->getOpcode()) {
case ISD::Constant: return SelectConstant(N);
case ISD::ConstantFP: return SelectConstantFP(N);
case ISD::FrameIndex: return SelectFrameIndex(N);
case ISD::SHL: return SelectSHL(N);
case ISD::LOAD: return SelectLoad(N);
case ISD::STORE: return SelectStore(N);
case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N);
case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N);
case HexagonISD::ADDC:
case HexagonISD::SUBC: return SelectAddSubCarry(N);
case HexagonISD::VALIGN: return SelectVAlign(N);
case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N);
case HexagonISD::TYPECAST: return SelectTypecast(N);
case HexagonISD::P2D: return SelectP2D(N);
case HexagonISD::D2P: return SelectD2P(N);
case HexagonISD::Q2V: return SelectQ2V(N);
case HexagonISD::V2Q: return SelectV2Q(N);
}
if (HST->useHVXOps()) {
switch (N->getOpcode()) {
case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N);
case HexagonISD::VROR: return SelectHvxRor(N);
}
}
SelectCode(N);
}
bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) {
SDValue Inp = Op, Res;
switch (ConstraintID) {
default:
return true;
case InlineAsm::Constraint_i:
case InlineAsm::Constraint_o: // Offsetable.
case InlineAsm::Constraint_v: // Not offsetable.
case InlineAsm::Constraint_m: // Memory.
if (SelectAddrFI(Inp, Res))
OutOps.push_back(Res);
else
OutOps.push_back(Inp);
break;
}
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
}
static bool isMemOPCandidate(SDNode *I, SDNode *U) {
// I is an operand of U. Check if U is an arithmetic (binary) operation
// usable in a memop, where the other operand is a loaded value, and the
// result of U is stored in the same location.
if (!U->hasOneUse())
return false;
unsigned Opc = U->getOpcode();
switch (Opc) {
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
break;
default:
return false;
}
SDValue S0 = U->getOperand(0);
SDValue S1 = U->getOperand(1);
SDValue SY = (S0.getNode() == I) ? S1 : S0;
SDNode *UUse = *U->use_begin();
if (UUse->getNumValues() != 1)
return false;
// Check if one of the inputs to U is a load instruction and the output
// is used by a store instruction. If so and they also have the same
// base pointer, then don't preoprocess this node sequence as it
// can be matched to a memop.
SDNode *SYNode = SY.getNode();
if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
if (LDBasePtr == STBasePtr)
return true;
}
return false;
}
// Transform: (or (select c x 0) z) -> (select c (or x z) z)
// (or (select c 0 y) z) -> (select c z (or y z))
void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
SelectionDAG &DAG = *CurDAG;
for (auto I : Nodes) {
if (I->getOpcode() != ISD::OR)
continue;
auto IsZero = [] (const SDValue &V) -> bool {
if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
return SC->isNullValue();
return false;
};
auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
if (Op.getOpcode() != ISD::SELECT)
return false;
return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
};
SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
EVT VT = I->getValueType(0);
bool SelN0 = IsSelect0(N0);
SDValue SOp = SelN0 ? N0 : N1;
SDValue VOp = SelN0 ? N1 : N0;
if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
SDValue SC = SOp.getOperand(0);
SDValue SX = SOp.getOperand(1);
SDValue SY = SOp.getOperand(2);
SDLoc DLS = SOp;
if (IsZero(SY)) {
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
} else if (IsZero(SX)) {
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
}
}
}
}
// Transform: (store ch val (add x (add (shl y c) e)))
// to: (store ch val (add x (shl (add y d) c))),
// where e = (shl d c) for some integer d.
// The purpose of this is to enable generation of loads/stores with
// shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
// value c must be 0, 1 or 2.
void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
SelectionDAG &DAG = *CurDAG;
for (auto I : Nodes) {
if (I->getOpcode() != ISD::STORE)
continue;
// I matched: (store ch val Off)
SDValue Off = I->getOperand(2);
// Off needs to match: (add x (add (shl y c) (shl d c))))
if (Off.getOpcode() != ISD::ADD)
continue;
// Off matched: (add x T0)
SDValue T0 = Off.getOperand(1);
// T0 needs to match: (add T1 T2):
if (T0.getOpcode() != ISD::ADD)
continue;
// T0 matched: (add T1 T2)
SDValue T1 = T0.getOperand(0);
SDValue T2 = T0.getOperand(1);
// T1 needs to match: (shl y c)
if (T1.getOpcode() != ISD::SHL)
continue;
SDValue C = T1.getOperand(1);
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
if (CN == nullptr)
continue;
unsigned CV = CN->getZExtValue();
if (CV > 2)
continue;
// T2 needs to match e, where e = (shl d c) for some d.
ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
if (EN == nullptr)
continue;
unsigned EV = EN->getZExtValue();
if (EV % (1 << CV) != 0)
continue;
unsigned DV = EV / (1 << CV);
// Replace T0 with: (shl (add y d) c)
SDLoc DL = SDLoc(I);
EVT VT = T0.getValueType();
SDValue D = DAG.getConstant(DV, DL, VT);
// NewAdd = (add y d)
SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
// NewShl = (shl NewAdd c)
SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
ReplaceNode(T0.getNode(), NewShl.getNode());
}
}
// Transform: (load ch (add x (and (srl y c) Mask)))
// to: (load ch (add x (shl (srl y d) d-c)))
// where
// Mask = 00..0 111..1 0.0
// | | +-- d-c 0s, and d-c is 0, 1 or 2.
// | +-------- 1s
// +-------------- at most c 0s
// Motivating example:
// DAG combiner optimizes (add x (shl (srl y 5) 2))
// to (add x (and (srl y 3) 1FFFFFFC))
// which results in a constant-extended and(##...,lsr). This transformation
// undoes this simplification for cases where the shl can be folded into
// an addressing mode.
void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
SelectionDAG &DAG = *CurDAG;
for (SDNode *N : Nodes) {
unsigned Opc = N->getOpcode();
if (Opc != ISD::LOAD && Opc != ISD::STORE)
continue;
SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
// Addr must match: (add x T0)
if (Addr.getOpcode() != ISD::ADD)
continue;
SDValue T0 = Addr.getOperand(1);
// T0 must match: (and T1 Mask)
if (T0.getOpcode() != ISD::AND)
continue;
// We have an AND.
//
// Check the first operand. It must be: (srl y c).
SDValue S = T0.getOperand(0);
if (S.getOpcode() != ISD::SRL)
continue;
ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
if (SN == nullptr)
continue;
if (SN->getAPIntValue().getBitWidth() != 32)
continue;
uint32_t CV = SN->getZExtValue();
// Check the second operand: the supposed mask.
ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
if (MN == nullptr)
continue;
if (MN->getAPIntValue().getBitWidth() != 32)
continue;
uint32_t Mask = MN->getZExtValue();
// Examine the mask.
uint32_t TZ = countTrailingZeros(Mask);
uint32_t M1 = countTrailingOnes(Mask >> TZ);
uint32_t LZ = countLeadingZeros(Mask);
// Trailing zeros + middle ones + leading zeros must equal the width.
if (TZ + M1 + LZ != 32)
continue;
// The number of trailing zeros will be encoded in the addressing mode.
if (TZ > 2)
continue;
// The number of leading zeros must be at most c.
if (LZ > CV)
continue;
// All looks good.
SDValue Y = S.getOperand(0);
EVT VT = Addr.getValueType();
SDLoc dl(S);
// TZ = D-C, so D = TZ+C.
SDValue D = DAG.getConstant(TZ+CV, dl, VT);
SDValue DC = DAG.getConstant(TZ, dl, VT);
SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
ReplaceNode(T0.getNode(), NewShl.getNode());
}
}
// Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
// (op ... 1 ...))
void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
SelectionDAG &DAG = *CurDAG;
for (SDNode *N : Nodes) {
unsigned Opc = N->getOpcode();
if (Opc != ISD::ZERO_EXTEND)
continue;
SDValue OpI1 = N->getOperand(0);
EVT OpVT = OpI1.getValueType();
if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
continue;
for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *U = *I;
if (U->getNumValues() != 1)
continue;
EVT UVT = U->getValueType(0);
if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
continue;
if (isMemOPCandidate(N, U))
continue;
// Potentially simplifiable operation.
unsigned I1N = I.getOperandNo();
SmallVector<SDValue,2> Ops(U->getNumOperands());
for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
Ops[i] = U->getOperand(i);
EVT BVT = Ops[I1N].getValueType();
SDLoc dl(U);
SDValue C0 = DAG.getConstant(0, dl, BVT);
SDValue C1 = DAG.getConstant(1, dl, BVT);
SDValue If0, If1;
if (isa<MachineSDNode>(U)) {
unsigned UseOpc = U->getMachineOpcode();
Ops[I1N] = C0;
If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
Ops[I1N] = C1;
If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
} else {
unsigned UseOpc = U->getOpcode();
Ops[I1N] = C0;
If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
Ops[I1N] = C1;
If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
}
SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0);
DAG.ReplaceAllUsesWith(U, Sel.getNode());
}
}
}
void HexagonDAGToDAGISel::PreprocessISelDAG() {
// Repack all nodes before calling each preprocessing function,
// because each of them can modify the set of nodes.
auto getNodes = [this] () -> std::vector<SDNode*> {
std::vector<SDNode*> T;
T.reserve(CurDAG->allnodes_size());
for (SDNode &N : CurDAG->allnodes())
T.push_back(&N);
return T;
};
// Transform: (or (select c x 0) z) -> (select c (or x z) z)
// (or (select c 0 y) z) -> (select c z (or y z))
ppSimplifyOrSelect0(getNodes());
// Transform: (store ch val (add x (add (shl y c) e)))
// to: (store ch val (add x (shl (add y d) c))),
// where e = (shl d c) for some integer d.
// The purpose of this is to enable generation of loads/stores with
// shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
// value c must be 0, 1 or 2.
ppAddrReorderAddShl(getNodes());
// Transform: (load ch (add x (and (srl y c) Mask)))
// to: (load ch (add x (shl (srl y d) d-c)))
// where
// Mask = 00..0 111..1 0.0
// | | +-- d-c 0s, and d-c is 0, 1 or 2.
// | +-------- 1s
// +-------------- at most c 0s
// Motivating example:
// DAG combiner optimizes (add x (shl (srl y 5) 2))
// to (add x (and (srl y 3) 1FFFFFFC))
// which results in a constant-extended and(##...,lsr). This transformation
// undoes this simplification for cases where the shl can be folded into
// an addressing mode.
ppAddrRewriteAndSrl(getNodes());
// Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
// (op ... 1 ...))
ppHoistZextI1(getNodes());
DEBUG_WITH_TYPE("isel", {
dbgs() << "Preprocessed (Hexagon) selection DAG:";
CurDAG->dump();
});
if (EnableAddressRebalancing) {
rebalanceAddressTrees();
DEBUG_WITH_TYPE("isel", {
dbgs() << "Address tree balanced selection DAG:";
CurDAG->dump();
});
}
}
void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
auto &HFI = *HST.getFrameLowering();
if (!HFI.needsAligna(*MF))
return;
MachineFrameInfo &MFI = MF->getFrameInfo();
MachineBasicBlock *EntryBB = &MF->front();
unsigned AR = FuncInfo->CreateReg(MVT::i32);
unsigned MaxA = MFI.getMaxAlignment();
BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
.addImm(MaxA);
MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
}
// Match a frame index that can be used in an addressing mode.
bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
if (N.getOpcode() != ISD::FrameIndex)
return false;
auto &HFI = *HST->getFrameLowering();
MachineFrameInfo &MFI = MF->getFrameInfo();
int FX = cast<FrameIndexSDNode>(N)->getIndex();
if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
return false;
R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
return true;
}
inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
return SelectGlobalAddress(N, R, false, 0);
}
inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
return SelectGlobalAddress(N, R, true, 0);
}
inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
return SelectAnyImmediate(N, R, 0);
}
inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
return SelectAnyImmediate(N, R, 0);
}
inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
return SelectAnyImmediate(N, R, 1);
}
inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
return SelectAnyImmediate(N, R, 2);
}
inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
return SelectAnyImmediate(N, R, 3);
}
inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
EVT T = N.getValueType();
if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
return false;
R = N;
return true;
}
bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
uint32_t LogAlign) {
auto IsAligned = [LogAlign] (uint64_t V) -> bool {
return alignTo(V, (uint64_t)1 << LogAlign) == V;
};
switch (N.getOpcode()) {
case ISD::Constant: {
if (N.getValueType() != MVT::i32)
return false;
int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
if (!IsAligned(V))
return false;
R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
return true;
}
case HexagonISD::JT:
case HexagonISD::CP:
// These are assumed to always be aligned at least 8-byte boundary.
if (LogAlign > 3)
return false;
R = N.getOperand(0);
return true;
case ISD::ExternalSymbol:
// Symbols may be aligned at any boundary.
if (LogAlign > 0)
return false;
R = N;
return true;
case ISD::BlockAddress:
// Block address is always aligned at least 4-byte boundary.
if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset()))
return false;
R = N;
return true;
}
if (SelectGlobalAddress(N, R, false, LogAlign) ||
SelectGlobalAddress(N, R, true, LogAlign))
return true;
return false;
}
bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
bool UseGP, uint32_t LogAlign) {
auto IsAligned = [LogAlign] (uint64_t V) -> bool {
return alignTo(V, (uint64_t)1 << LogAlign) == V;
};
switch (N.getOpcode()) {
case ISD::ADD: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
unsigned GAOpc = N0.getOpcode();
if (UseGP && GAOpc != HexagonISD::CONST32_GP)
return false;
if (!UseGP && GAOpc != HexagonISD::CONST32)
return false;
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
SDValue Addr = N0.getOperand(0);
// For the purpose of alignment, sextvalue and zextvalue are the same.
if (!IsAligned(Const->getZExtValue()))
return false;
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
if (GA->getOpcode() == ISD::TargetGlobalAddress) {
uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
N.getValueType(), NewOff);
return true;
}
}
}
break;
}
case HexagonISD::CP:
case HexagonISD::JT:
case HexagonISD::CONST32:
// The operand(0) of CONST32 is TargetGlobalAddress, which is what we
// want in the instruction.
if (!UseGP)
R = N.getOperand(0);
return !UseGP;
case HexagonISD::CONST32_GP:
if (UseGP)
R = N.getOperand(0);
return UseGP;
default:
return false;
}
return false;
}
bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
// This (complex pattern) function is meant to detect a sign-extension
// i32->i64 on a per-operand basis. This would allow writing single
// patterns that would cover a number of combinations of different ways
// a sign-extensions could be written. For example:
// (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
// could match either one of these:
// (mul (sext x) (sext_inreg y))
// (mul (sext-load *p) (sext_inreg y))
// (mul (sext_inreg x) (sext y))
// etc.
//
// The returned value will have type i64 and its low word will
// contain the value being extended. The high bits are not specified.
// The returned type is i64 because the original type of N was i64,
// but the users of this function should only use the low-word of the
// result, e.g.
// (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
if (N.getValueType() != MVT::i64)
return false;
unsigned Opc = N.getOpcode();
switch (Opc) {
case ISD::SIGN_EXTEND:
case ISD::SIGN_EXTEND_INREG: {
// sext_inreg has the source type as a separate operand.
EVT T = Opc == ISD::SIGN_EXTEND
? N.getOperand(0).getValueType()
: cast<VTSDNode>(N.getOperand(1))->getVT();
unsigned SW = T.getSizeInBits();
if (SW == 32)
R = N.getOperand(0);
else if (SW < 32)
R = N;
else
return false;
break;
}
case ISD::LOAD: {
LoadSDNode *L = cast<LoadSDNode>(N);
if (L->getExtensionType() != ISD::SEXTLOAD)
return false;
// All extending loads extend to i32, so even if the value in
// memory is shorter than 32 bits, it will be i32 after the load.
if (L->getMemoryVT().getSizeInBits() > 32)
return false;
R = N;
break;
}
case ISD::SRA: {
auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!S || S->getZExtValue() != 32)
return false;
R = N;
break;
}
default:
return false;
}
EVT RT = R.getValueType();
if (RT == MVT::i64)
return true;
assert(RT == MVT::i32);
// This is only to produce a value of type i64. Do not rely on the
// high bits produced by this.
const SDLoc &dl(N);
SDValue Ops[] = {
CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
};
SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
MVT::i64, Ops);
R = SDValue(T, 0);
return true;
}
bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
SDValue &Src) {
unsigned Opc = Val.getOpcode();
switch (Opc) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: {
const SDValue &Op0 = Val.getOperand(0);
EVT T = Op0.getValueType();
if (T.isInteger() && T.getSizeInBits() == NumBits) {
Src = Op0;
return true;
}
break;
}
case ISD::SIGN_EXTEND_INREG:
case ISD::AssertSext:
case ISD::AssertZext:
if (Val.getOperand(0).getValueType().isInteger()) {
VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
if (T->getVT().getSizeInBits() == NumBits) {
Src = Val.getOperand(0);
return true;
}
}
break;
case ISD::AND: {
// Check if this is an AND with NumBits of lower bits set to 1.
uint64_t Mask = (1 << NumBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if (C->getZExtValue() == Mask) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if (C->getZExtValue() == Mask) {
Src = Val.getOperand(0);
return true;
}
}
break;
}
case ISD::OR:
case ISD::XOR: {
// OR/XOR with the lower NumBits bits set to 0.
uint64_t Mask = (1 << NumBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if ((C->getZExtValue() & Mask) == 0) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if ((C->getZExtValue() & Mask) == 0) {
Src = Val.getOperand(0);
return true;
}
}
break;
}
default:
break;
}
return false;
}
bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
return N->getAlignment() >= N->getMemoryVT().getStoreSize();
}
bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
switch (N->getMemoryVT().getStoreSize()) {
case 1:
return StackSize <= 56; // 1*2^6 - 8
case 2:
return StackSize <= 120; // 2*2^6 - 8
case 4:
return StackSize <= 248; // 4*2^6 - 8
default:
return false;
}
}
// Return true when the given node fits in a positive half word.
bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
int64_t V = CN->getSExtValue();
return V > 0 && isInt<16>(V);
}
if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
return VN->getVT().getSizeInBits() <= 16;
}
return false;
}
bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
return !CheckSingleUse || N->hasOneUse();
}
////////////////////////////////////////////////////////////////////////////////
// Rebalancing of address calculation trees
static bool isOpcodeHandled(const SDNode *N) {
switch (N->getOpcode()) {
case ISD::ADD:
case ISD::MUL:
return true;
case ISD::SHL:
// We only handle constant shifts because these can be easily flattened
// into multiplications by 2^Op1.
return isa<ConstantSDNode>(N->getOperand(1).getNode());
default:
return false;
}
}
/// Return the weight of an SDNode
int HexagonDAGToDAGISel::getWeight(SDNode *N) {
if (!isOpcodeHandled(N))
return 1;
assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
return RootWeights[N];
}
int HexagonDAGToDAGISel::getHeight(SDNode *N) {
if (!isOpcodeHandled(N))
return 0;
assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
"Cannot query height of unvisited/RAUW'd node!");
return RootHeights[N];
}
namespace {
struct WeightedLeaf {
SDValue Value;
int Weight;
int InsertionOrder;
WeightedLeaf() : Value(SDValue()) { }
WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
assert(Weight >= 0 && "Weight must be >= 0");
}
static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
assert(A.Value.getNode() && B.Value.getNode());
return A.Weight == B.Weight ?
(A.InsertionOrder > B.InsertionOrder) :
(A.Weight > B.Weight);
}
};
/// A specialized priority queue for WeigthedLeaves. It automatically folds
/// constants and allows removal of non-top elements while maintaining the
/// priority order.
class LeafPrioQueue {
SmallVector<WeightedLeaf, 8> Q;
bool HaveConst;
WeightedLeaf ConstElt;
unsigned Opcode;
public:
bool empty() {
return (!HaveConst && Q.empty());
}
size_t size() {
return Q.size() + HaveConst;
}
bool hasConst() {
return HaveConst;
}
const WeightedLeaf &top() {
if (HaveConst)
return ConstElt;
return Q.front();
}
WeightedLeaf pop() {
if (HaveConst) {
HaveConst = false;
return ConstElt;
}
std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
return Q.pop_back_val();
}
void push(WeightedLeaf L, bool SeparateConst=true) {
if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
if (Opcode == ISD::MUL &&
cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
return;
if (Opcode == ISD::ADD &&
cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
return;
HaveConst = true;
ConstElt = L;
} else {
Q.push_back(L);
std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
}
}
/// Push L to the bottom of the queue regardless of its weight. If L is
/// constant, it will not be folded with other constants in the queue.
void pushToBottom(WeightedLeaf L) {
L.Weight = 1000;
push(L, false);
}
/// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
/// lowest weight and remove it from the queue.
WeightedLeaf findSHL(uint64_t MaxAmount);
WeightedLeaf findMULbyConst();
LeafPrioQueue(unsigned Opcode) :
HaveConst(false), Opcode(Opcode) { }
};
} // end anonymous namespace
WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
int ResultPos;
WeightedLeaf Result;
for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
const WeightedLeaf &L = Q[Pos];
const SDValue &Val = L.Value;
if (Val.getOpcode() != ISD::SHL ||
!isa<ConstantSDNode>(Val.getOperand(1)) ||
Val.getConstantOperandVal(1) > MaxAmount)
continue;
if (!Result.Value.getNode() || Result.Weight > L.Weight ||
(Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
{
Result = L;
ResultPos = Pos;
}
}
if (Result.Value.getNode()) {
Q.erase(&Q[ResultPos]);
std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
}
return Result;
}
WeightedLeaf LeafPrioQueue::findMULbyConst() {
int ResultPos;
WeightedLeaf Result;
for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
const WeightedLeaf &L = Q[Pos];
const SDValue &Val = L.Value;
if (Val.getOpcode() != ISD::MUL ||
!isa<ConstantSDNode>(Val.getOperand(1)) ||
Val.getConstantOperandVal(1) > 127)
continue;
if (!Result.Value.getNode() || Result.Weight > L.Weight ||
(Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
{
Result = L;
ResultPos = Pos;
}
}
if (Result.Value.getNode()) {
Q.erase(&Q[ResultPos]);
std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
}
return Result;
}
SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
return CurDAG->getConstant(MulFactor, SDLoc(N),
N->getOperand(1).getValueType());
}
/// @returns the value x for which 2^x is a factor of Val
static unsigned getPowerOf2Factor(SDValue Val) {
if (Val.getOpcode() == ISD::MUL) {
unsigned MaxFactor = 0;
for (int i = 0; i < 2; ++i) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
if (!C)
continue;
const APInt &CInt = C->getAPIntValue();
if (CInt.getBoolValue())
MaxFactor = CInt.countTrailingZeros();
}
return MaxFactor;
}
if (Val.getOpcode() == ISD::SHL) {
if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
return 0;
return (unsigned) Val.getConstantOperandVal(1);
}
return 0;
}
/// @returns true if V>>Amount will eliminate V's operation on its child
static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
if (V.getOpcode() == ISD::MUL) {
SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
for (int i = 0; i < 2; ++i)
if (isa<ConstantSDNode>(Ops[i].getNode()) &&
V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
return (NewConst == 1);
}
} else if (V.getOpcode() == ISD::SHL) {
return (Amount == V.getConstantOperandVal(1));
}
return false;
}
SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
if (V.getOpcode() == ISD::MUL) {
for (int i=0; i < 2; ++i) {
if (isa<ConstantSDNode>(Ops[i].getNode()) &&
V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
if (NewConst == 1)
return Ops[!i];
Ops[i] = CurDAG->getConstant(NewConst,
SDLoc(V), V.getValueType());
break;
}
}
} else if (V.getOpcode() == ISD::SHL) {
uint64_t ShiftAmount = V.getConstantOperandVal(1);
if (ShiftAmount == Power)
return Ops[0];
Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
SDLoc(V), V.getValueType());
}
return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
}
static bool isTargetConstant(const SDValue &V) {
return V.getOpcode() == HexagonISD::CONST32 ||
V.getOpcode() == HexagonISD::CONST32_GP;
}
unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
if (GAUsesInFunction.count(V))
return GAUsesInFunction[V];
unsigned Result = 0;
const Function &CurF = CurDAG->getMachineFunction().getFunction();
for (const User *U : V->users()) {
if (isa<Instruction>(U) &&
cast<Instruction>(U)->getParent()->getParent() == &CurF)
++Result;
}
GAUsesInFunction[V] = Result;
return Result;
}
/// Note - After calling this, N may be dead. It may have been replaced by a
/// new node, so always use the returned value in place of N.
///
/// @returns The SDValue taking the place of N (which could be N if it is
/// unchanged)
SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
assert(RootWeights.count(N) && "Cannot balance non-root node.");
assert(RootWeights[N] != -2 && "This node was RAUW'd!");
assert(!TopLevel || N->getOpcode() == ISD::ADD);
// Return early if this node was already visited
if (RootWeights[N] != -1)
return SDValue(N, 0);
assert(isOpcodeHandled(N));
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Return early if the operands will remain unchanged or are all roots
if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
(!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
SDNode *Op0N = Op0.getNode();
int Weight;
if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
Weight = getWeight(balanceSubTree(Op0N).getNode());
// Weight = calculateWeight(Op0N);
} else
Weight = getWeight(Op0N);
SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
Weight += getWeight(balanceSubTree(Op1N).getNode());
// Weight += calculateWeight(Op1N);
} else
Weight += getWeight(Op1N);
RootWeights[N] = Weight;
RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
getHeight(N->getOperand(1).getNode())) + 1;
LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
<< " Height=" << RootHeights[N] << "): ");
LLVM_DEBUG(N->dump(CurDAG));
return SDValue(N, 0);
}
LLVM_DEBUG(dbgs() << "** Balancing root node: ");
LLVM_DEBUG(N->dump(CurDAG));
unsigned NOpcode = N->getOpcode();
LeafPrioQueue Leaves(NOpcode);
SmallVector<SDValue, 4> Worklist;
Worklist.push_back(SDValue(N, 0));
// SHL nodes will be converted to MUL nodes
if (NOpcode == ISD::SHL)
NOpcode = ISD::MUL;
bool CanFactorize = false;
WeightedLeaf Mul1, Mul2;
unsigned MaxPowerOf2 = 0;
WeightedLeaf GA;
// Do not try to factor out a shift if there is already a shift at the tip of
// the tree.
bool HaveTopLevelShift = false;
if (TopLevel &&
((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
Op0.getConstantOperandVal(1) < 4) ||
(isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
Op1.getConstantOperandVal(1) < 4)))
HaveTopLevelShift = true;
// Flatten the subtree into an ordered list of leaves; at the same time
// determine whether the tree is already balanced.
int InsertionOrder = 0;
SmallDenseMap<SDValue, int> NodeHeights;
bool Imbalanced = false;
int CurrentWeight = 0;
while (!Worklist.empty()) {
SDValue Child = Worklist.pop_back_val();
if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
// CASE 1: Child is a root note
int Weight = RootWeights[Child.getNode()];
if (Weight == -1) {
Child = balanceSubTree(Child.getNode());
// calculateWeight(Child.getNode());
Weight = getWeight(Child.getNode());
} else if (Weight == -2) {
// Whoops, this node was RAUWd by one of the balanceSubTree calls we
// made. Our worklist isn't up to date anymore.
// Restart the whole process.
LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
return balanceSubTree(N, TopLevel);
}
NodeHeights[Child] = 1;
CurrentWeight += Weight;
unsigned PowerOf2;
if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
(Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
// Try to identify two factorizable MUL/SHL children greedily. Leave
// them out of the priority queue for now so we can deal with them
// after.
if (!Mul1.Value.getNode()) {
Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
MaxPowerOf2 = PowerOf2;
} else {
Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
// Our addressing modes can only shift by a maximum of 3
if (MaxPowerOf2 > 3)
MaxPowerOf2 = 3;
CanFactorize = true;
}
} else
Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
} else if (!isOpcodeHandled(Child.getNode())) {
// CASE 2: Child is an unhandled kind of node (e.g. constant)
int Weight = getWeight(Child.getNode());
NodeHeights[Child] = getHeight(Child.getNode());
CurrentWeight += Weight;
if (isTargetConstant(Child) && !GA.Value.getNode())
GA = WeightedLeaf(Child, Weight, InsertionOrder++);
else
Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
} else {
// CASE 3: Child is a subtree of same opcode
// Visit children first, then flatten.
unsigned ChildOpcode = Child.getOpcode();
assert(ChildOpcode == NOpcode ||
(NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
// Convert SHL to MUL
SDValue Op1;
if (ChildOpcode == ISD::SHL)
Op1 = getMultiplierForSHL(Child.getNode());
else
Op1 = Child->getOperand(1);
if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
assert(!NodeHeights.count(Child) && "Parent visited before children?");
// Visit children first, then re-visit this node
Worklist.push_back(Child);
Worklist.push_back(Op1);
Worklist.push_back(Child->getOperand(0));
} else {
// Back at this node after visiting the children
if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
Imbalanced = true;
NodeHeights[Child] = std::max(NodeHeights[Op1],
NodeHeights[Child->getOperand(0)]) + 1;
}
}
}
LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
<< " weight=" << CurrentWeight
<< " imbalanced=" << Imbalanced << "\n");
// Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
// This factors out a shift in order to match memw(a<<Y+b).
if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
int Weight = Mul1.Weight + Mul2.Weight;
int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
Mul1Factored, Mul2Factored);
SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
Mul1.Value.getValueType());
SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
Sum, Const);
NodeHeights[New] = Height;
Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
} else if (Mul1.Value.getNode()) {
// We failed to factorize two MULs, so now the Muls are left outside the
// queue... add them back.
Leaves.push(Mul1);
if (Mul2.Value.getNode())
Leaves.push(Mul2);
CanFactorize = false;
}
// Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
// and the root node itself is not used more than twice. This reduces the
// amount of additional constant extenders introduced by this optimization.
bool CombinedGA = false;
if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
GA.Value.hasOneUse() && N->use_size() < 3) {
GlobalAddressSDNode *GANode =
cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
getTargetLowering()->isOffsetFoldingLegal(GANode)) {
LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
<< Offset->getSExtValue() << "): ");
LLVM_DEBUG(GANode->dump(CurDAG));
SDValue NewTGA =
CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
GANode->getValueType(0),
GANode->getOffset() + (uint64_t)Offset->getSExtValue());
GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
GA.Value.getValueType(), NewTGA);
GA.Weight += Leaves.top().Weight;
NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
CombinedGA = true;
Leaves.pop(); // Remove the offset constant from the queue
}
}
if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
(RebalanceOnlyImbalancedTrees && !Imbalanced)) {
RootWeights[N] = CurrentWeight;
RootHeights[N] = NodeHeights[SDValue(N, 0)];
return SDValue(N, 0);
}
// Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
if (NOpcode == ISD::ADD && GA.Value.getNode()) {
WeightedLeaf SHL = Leaves.findSHL(31);
if (SHL.Value.getNode()) {
int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
GA.Value.getValueType(),
GA.Value, SHL.Value);
GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
NodeHeights[GA.Value] = Height;
}
}
if (GA.Value.getNode())
Leaves.push(GA);
// If this is the top level and we haven't factored out a shift, we should try
// to move a constant to the bottom to match addressing modes like memw(rX+C)
if (TopLevel && !CanFactorize && Leaves.hasConst()) {
LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
Leaves.pushToBottom(Leaves.pop());
}
const DataLayout &DL = CurDAG->getDataLayout();
const TargetLowering &TLI = *getTargetLowering();
// Rebuild the tree using Huffman's algorithm
while (Leaves.size() > 1) {
WeightedLeaf L0 = Leaves.pop();
// See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
// otherwise just get the next leaf
WeightedLeaf L1 = Leaves.findMULbyConst();
if (!L1.Value.getNode())
L1 = Leaves.pop();
assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
SDValue V0 = L0.Value;
int V0Weight = L0.Weight;
SDValue V1 = L1.Value;
int V1Weight = L1.Weight;
// Make sure that none of these nodes have been RAUW'd
if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
(RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
return balanceSubTree(N, TopLevel);
}
ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
EVT VT = N->getValueType(0);
SDValue NewNode;
if (V0C && !V1C) {
std::swap(V0, V1);
std::swap(V0C, V1C);
}
// Calculate height of this node
assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
"Children must have been visited before re-combining them!");
int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
// Rebuild this node (and restore SHL from MUL if needed)
if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
NewNode = CurDAG->getNode(
ISD::SHL, SDLoc(V0), VT, V0,
CurDAG->getConstant(
V1C->getAPIntValue().logBase2(), SDLoc(N),
TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
else
NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
NodeHeights[NewNode] = Height;
int Weight = V0Weight + V1Weight;
Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
<< ",Height=" << Height << "):\n");
LLVM_DEBUG(NewNode.dump());
}
assert(Leaves.size() == 1);
SDValue NewRoot = Leaves.top().Value;
assert(NodeHeights.count(NewRoot));
int Height = NodeHeights[NewRoot];
// Restore SHL if we earlier converted it to a MUL
if (NewRoot.getOpcode() == ISD::MUL) {
ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
if (V1C && V1C->getAPIntValue().isPowerOf2()) {
EVT VT = NewRoot.getValueType();
SDValue V0 = NewRoot.getOperand(0);
NewRoot = CurDAG->getNode(
ISD::SHL, SDLoc(NewRoot), VT, V0,
CurDAG->getConstant(
V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
}
}
if (N != NewRoot.getNode()) {
LLVM_DEBUG(dbgs() << "--> Root is now: ");
LLVM_DEBUG(NewRoot.dump());
// Replace all uses of old root by new root
CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
// Mark that we have RAUW'd N
RootWeights[N] = -2;
} else {
LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
}
RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
RootHeights[NewRoot.getNode()] = Height;
return NewRoot;
}
void HexagonDAGToDAGISel::rebalanceAddressTrees() {
for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
SDNode *N = &*I++;
if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
continue;
SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
if (BasePtr.getOpcode() != ISD::ADD)
continue;
// We've already processed this node
if (RootWeights.count(BasePtr.getNode()))
continue;
LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
LLVM_DEBUG(N->dump(CurDAG));
// FindRoots
SmallVector<SDNode *, 4> Worklist;
Worklist.push_back(BasePtr.getOperand(0).getNode());
Worklist.push_back(BasePtr.getOperand(1).getNode());
while (!Worklist.empty()) {
SDNode *N = Worklist.pop_back_val();
unsigned Opcode = N->getOpcode();
if (!isOpcodeHandled(N))
continue;
Worklist.push_back(N->getOperand(0).getNode());
Worklist.push_back(N->getOperand(1).getNode());
// Not a root if it has only one use and same opcode as its parent
if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
continue;
// This root node has already been processed
if (RootWeights.count(N))
continue;
RootWeights[N] = -1;
}
// Balance node itself
RootWeights[BasePtr.getNode()] = -1;
SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
if (N->getOpcode() == ISD::LOAD)
N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
NewBasePtr, N->getOperand(2));
else
N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
NewBasePtr, N->getOperand(3));
LLVM_DEBUG(dbgs() << "--> Final node: ");
LLVM_DEBUG(N->dump(CurDAG));
}
CurDAG->RemoveDeadNodes();
GAUsesInFunction.clear();
RootHeights.clear();
RootWeights.clear();
}
|