aboutsummaryrefslogtreecommitdiff
blob: 6da420b8e0dd507c9d92df90a0d3990991fee371 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
// Arguments to kernel and device functions are passed via param space,
// which imposes certain restrictions:
// http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
//
// Kernel parameters are read-only and accessible only via ld.param
// instruction, directly or via a pointer. Pointers to kernel
// arguments can't be converted to generic address space.
//
// Device function parameters are directly accessible via
// ld.param/st.param, but taking the address of one returns a pointer
// to a copy created in local space which *can't* be used with
// ld.param/st.param.
//
// Copying a byval struct into local memory in IR allows us to enforce
// the param space restrictions, gives the rest of IR a pointer w/o
// param space restrictions, and gives us an opportunity to eliminate
// the copy.
//
// Pointer arguments to kernel functions need more work to be lowered:
//
// 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
//    global address space. This allows later optimizations to emit
//    ld.global.*/st.global.* for accessing these pointer arguments. For
//    example,
//
//    define void @foo(float* %input) {
//      %v = load float, float* %input, align 4
//      ...
//    }
//
//    becomes
//
//    define void @foo(float* %input) {
//      %input2 = addrspacecast float* %input to float addrspace(1)*
//      %input3 = addrspacecast float addrspace(1)* %input2 to float*
//      %v = load float, float* %input3, align 4
//      ...
//    }
//
//    Later, NVPTXInferAddressSpaces will optimize it to
//
//    define void @foo(float* %input) {
//      %input2 = addrspacecast float* %input to float addrspace(1)*
//      %v = load float, float addrspace(1)* %input2, align 4
//      ...
//    }
//
// 2. Convert pointers in a byval kernel parameter to pointers in the global
//    address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
//
//    struct S {
//      int *x;
//      int *y;
//    };
//    __global__ void foo(S s) {
//      int *b = s.y;
//      // use b
//    }
//
//    "b" points to the global address space. In the IR level,
//
//    define void @foo({i32*, i32*}* byval %input) {
//      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
//      %b = load i32*, i32** %b_ptr
//      ; use %b
//    }
//
//    becomes
//
//    define void @foo({i32*, i32*}* byval %input) {
//      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
//      %b = load i32*, i32** %b_ptr
//      %b_global = addrspacecast i32* %b to i32 addrspace(1)*
//      %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
//      ; use %b_generic
//    }
//
// TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
// cancel the addrspacecast pair this pass emits.
//===----------------------------------------------------------------------===//

#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"

#define DEBUG_TYPE "nvptx-lower-args"

using namespace llvm;

namespace llvm {
void initializeNVPTXLowerArgsPass(PassRegistry &);
}

namespace {
class NVPTXLowerArgs : public FunctionPass {
  bool runOnFunction(Function &F) override;

  bool runOnKernelFunction(Function &F);
  bool runOnDeviceFunction(Function &F);

  // handle byval parameters
  void handleByValParam(Argument *Arg);
  // Knowing Ptr must point to the global address space, this function
  // addrspacecasts Ptr to global and then back to generic. This allows
  // NVPTXInferAddressSpaces to fold the global-to-generic cast into
  // loads/stores that appear later.
  void markPointerAsGlobal(Value *Ptr);

public:
  static char ID; // Pass identification, replacement for typeid
  NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
      : FunctionPass(ID), TM(TM) {}
  StringRef getPassName() const override {
    return "Lower pointer arguments of CUDA kernels";
  }

private:
  const NVPTXTargetMachine *TM;
};
} // namespace

char NVPTXLowerArgs::ID = 1;

INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
                "Lower arguments (NVPTX)", false, false)

// =============================================================================
// If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
// and we can't guarantee that the only accesses are loads,
// then add the following instructions to the first basic block:
//
// %temp = alloca %struct.x, align 8
// %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
// %tv = load %struct.x addrspace(101)* %tempd
// store %struct.x %tv, %struct.x* %temp, align 8
//
// The above code allocates some space in the stack and copies the incoming
// struct from param space to local space.
// Then replace all occurrences of %d by %temp.
//
// In case we know that all users are GEPs or Loads, replace them with the same
// ones in parameter AS, so we can access them using ld.param.
// =============================================================================

// Replaces the \p OldUser instruction with the same in parameter AS.
// Only Load and GEP are supported.
static void convertToParamAS(Value *OldUser, Value *Param) {
  Instruction *I = dyn_cast<Instruction>(OldUser);
  assert(I && "OldUser must be an instruction");
  struct IP {
    Instruction *OldInstruction;
    Value *NewParam;
  };
  SmallVector<IP> ItemsToConvert = {{I, Param}};
  SmallVector<Instruction *> InstructionsToDelete;

  auto CloneInstInParamAS = [](const IP &I) -> Value * {
    if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
      LI->setOperand(0, I.NewParam);
      return LI;
    }
    if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
      SmallVector<Value *, 4> Indices(GEP->indices());
      auto *NewGEP = GetElementPtrInst::Create(nullptr, I.NewParam, Indices,
                                               GEP->getName(), GEP);
      NewGEP->setIsInBounds(GEP->isInBounds());
      return NewGEP;
    }
    if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
      auto *NewBCType = BC->getType()->getPointerElementType()->getPointerTo(
          ADDRESS_SPACE_PARAM);
      return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
                                 BC->getName(), BC);
    }
    if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
      assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
      // Just pass through the argument, the old ASC is no longer needed.
      return I.NewParam;
    }
    llvm_unreachable("Unsupported instruction");
  };

  while (!ItemsToConvert.empty()) {
    IP I = ItemsToConvert.pop_back_val();
    Value *NewInst = CloneInstInParamAS(I);

    if (NewInst && NewInst != I.OldInstruction) {
      // We've created a new instruction. Queue users of the old instruction to
      // be converted and the instruction itself to be deleted. We can't delete
      // the old instruction yet, because it's still in use by a load somewhere.
      llvm::for_each(
          I.OldInstruction->users(), [NewInst, &ItemsToConvert](Value *V) {
            ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
          });

      InstructionsToDelete.push_back(I.OldInstruction);
    }
  }

  // Now we know that all argument loads are using addresses in parameter space
  // and we can finally remove the old instructions in generic AS.  Instructions
  // scheduled for removal should be processed in reverse order so the ones
  // closest to the load are deleted first. Otherwise they may still be in use.
  // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
  // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
  // the BitCast.
  llvm::for_each(reverse(InstructionsToDelete),
                 [](Instruction *I) { I->eraseFromParent(); });
}

void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
  Function *Func = Arg->getParent();
  Instruction *FirstInst = &(Func->getEntryBlock().front());
  PointerType *PType = dyn_cast<PointerType>(Arg->getType());

  assert(PType && "Expecting pointer type in handleByValParam");

  Type *StructType = PType->getElementType();

  auto IsALoadChain = [&](Value *Start) {
    SmallVector<Value *, 16> ValuesToCheck = {Start};
    auto IsALoadChainInstr = [](Value *V) -> bool {
      if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
        return true;
      // ASC to param space are OK, too -- we'll just strip them.
      if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
        if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
          return true;
      }
      return false;
    };

    while (!ValuesToCheck.empty()) {
      Value *V = ValuesToCheck.pop_back_val();
      if (!IsALoadChainInstr(V)) {
        LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
                          << "\n");
        (void)Arg;
        return false;
      }
      if (!isa<LoadInst>(V))
        llvm::append_range(ValuesToCheck, V->users());
    }
    return true;
  };

  if (llvm::all_of(Arg->users(), IsALoadChain)) {
    // Convert all loads and intermediate operations to use parameter AS and
    // skip creation of a local copy of the argument.
    SmallVector<User *, 16> UsersToUpdate(Arg->users());
    Value *ArgInParamAS = new AddrSpaceCastInst(
        Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
        FirstInst);
    llvm::for_each(UsersToUpdate, [ArgInParamAS](Value *V) {
      convertToParamAS(V, ArgInParamAS);
    });
    LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
    return;
  }

  // Otherwise we have to create a temporary copy.
  const DataLayout &DL = Func->getParent()->getDataLayout();
  unsigned AS = DL.getAllocaAddrSpace();
  AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
  // Set the alignment to alignment of the byval parameter. This is because,
  // later load/stores assume that alignment, and we are going to replace
  // the use of the byval parameter with this alloca instruction.
  AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
                           .getValueOr(DL.getPrefTypeAlign(StructType)));
  Arg->replaceAllUsesWith(AllocA);

  Value *ArgInParam = new AddrSpaceCastInst(
      Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
      FirstInst);
  // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
  // addrspacecast preserves alignment.  Since params are constant, this load is
  // definitely not volatile.
  LoadInst *LI =
      new LoadInst(StructType, ArgInParam, Arg->getName(),
                   /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
  new StoreInst(LI, AllocA, FirstInst);
}

void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
  if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
    return;

  // Deciding where to emit the addrspacecast pair.
  BasicBlock::iterator InsertPt;
  if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
    // Insert at the functon entry if Ptr is an argument.
    InsertPt = Arg->getParent()->getEntryBlock().begin();
  } else {
    // Insert right after Ptr if Ptr is an instruction.
    InsertPt = ++cast<Instruction>(Ptr)->getIterator();
    assert(InsertPt != InsertPt->getParent()->end() &&
           "We don't call this function with Ptr being a terminator.");
  }

  Instruction *PtrInGlobal = new AddrSpaceCastInst(
      Ptr, PointerType::get(Ptr->getType()->getPointerElementType(),
                            ADDRESS_SPACE_GLOBAL),
      Ptr->getName(), &*InsertPt);
  Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
                                              Ptr->getName(), &*InsertPt);
  // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
  Ptr->replaceAllUsesWith(PtrInGeneric);
  PtrInGlobal->setOperand(0, Ptr);
}

// =============================================================================
// Main function for this pass.
// =============================================================================
bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
  if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
    // Mark pointers in byval structs as global.
    for (auto &B : F) {
      for (auto &I : B) {
        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
          if (LI->getType()->isPointerTy()) {
            Value *UO = getUnderlyingObject(LI->getPointerOperand());
            if (Argument *Arg = dyn_cast<Argument>(UO)) {
              if (Arg->hasByValAttr()) {
                // LI is a load from a pointer within a byval kernel parameter.
                markPointerAsGlobal(LI);
              }
            }
          }
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
  for (Argument &Arg : F.args()) {
    if (Arg.getType()->isPointerTy()) {
      if (Arg.hasByValAttr())
        handleByValParam(&Arg);
      else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
        markPointerAsGlobal(&Arg);
    }
  }
  return true;
}

// Device functions only need to copy byval args into local memory.
bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
  LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
  for (Argument &Arg : F.args())
    if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
      handleByValParam(&Arg);
  return true;
}

bool NVPTXLowerArgs::runOnFunction(Function &F) {
  return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
}

FunctionPass *
llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
  return new NVPTXLowerArgs(TM);
}