aboutsummaryrefslogtreecommitdiff
blob: cebcbf01ed75d078630a9d528bb6f5cb932bc745 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
//===-- X86LowerAMXIntrinsics.cpp -X86 Scalarize AMX Intrinsics------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to transform amx intrinsics to scalar operations.
/// This pass is always enabled and it skips when it is not -O0 and has no
/// optnone attributes. With -O0 or optnone attribute, the def of shape to amx
/// intrinsics is near the amx intrinsics code. We are not able to find a
/// point which post-dominate all the shape and dominate all amx intrinsics.
/// To decouple the dependency of the shape, we transform amx intrinsics
/// to scalar operation, so that compiling doesn't fail. In long term, we
/// should improve fast register allocation to allocate amx register.
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "lower-amx-intrinsics"

#ifndef NDEBUG
static bool isV256I32Ty(Type *Ty) {
  if (auto *FVT = dyn_cast<FixedVectorType>(Ty))
    return FVT->getNumElements() == 256 &&
           FVT->getElementType()->isIntegerTy(32);
  return false;
}
#endif

namespace {
class X86LowerAMXIntrinsics {
  Function &Func;

public:
  X86LowerAMXIntrinsics(Function &F, DomTreeUpdater &DomTU, LoopInfo *LoopI)
      : Func(F), DTU(DomTU), LI(LoopI) {}
  bool visit();

private:
  DomTreeUpdater &DTU;
  LoopInfo *LI;
  BasicBlock *createLoop(BasicBlock *Preheader, BasicBlock *Exit, Value *Bound,
                         Value *Step, StringRef Name, IRBuilderBase &B,
                         Loop *L);
  template <bool IsTileLoad>
  Value *createTileLoadStoreLoops(BasicBlock *Start, BasicBlock *End,
                                  IRBuilderBase &B, Value *Row, Value *Col,
                                  Value *Ptr, Value *Stride, Value *Tile);
  template <Intrinsic::ID IntrID>
  typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
                              IntrID == Intrinsic::x86_tdpbf16ps_internal,
                          Value *>::type
  createTileDPLoops(BasicBlock *Start, BasicBlock *End, IRBuilderBase &B,
                    Value *Row, Value *Col, Value *K, Value *Acc, Value *LHS,
                    Value *RHS);
  template <bool IsTileLoad>
  bool lowerTileLoadStore(Instruction *TileLoadStore);
  template <Intrinsic::ID IntrID>
  typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
                              IntrID == Intrinsic::x86_tdpbf16ps_internal,
                          bool>::type
  lowerTileDP(Instruction *TileDP);
  bool lowerTileZero(Instruction *TileZero);
};

BasicBlock *X86LowerAMXIntrinsics::createLoop(BasicBlock *Preheader,
                                              BasicBlock *Exit, Value *Bound,
                                              Value *Step, StringRef Name,
                                              IRBuilderBase &B, Loop *L) {
  LLVMContext &Ctx = Preheader->getContext();
  BasicBlock *Header =
      BasicBlock::Create(Ctx, Name + ".header", Preheader->getParent(), Exit);
  BasicBlock *Body =
      BasicBlock::Create(Ctx, Name + ".body", Header->getParent(), Exit);
  BasicBlock *Latch =
      BasicBlock::Create(Ctx, Name + ".latch", Header->getParent(), Exit);

  Type *I16Ty = Type::getInt16Ty(Ctx);
  BranchInst::Create(Body, Header);
  BranchInst::Create(Latch, Body);
  PHINode *IV =
      PHINode::Create(I16Ty, 2, Name + ".iv", Header->getTerminator());
  IV->addIncoming(ConstantInt::get(I16Ty, 0), Preheader);

  B.SetInsertPoint(Latch);
  Value *Inc = B.CreateAdd(IV, Step, Name + ".step");
  Value *Cond = B.CreateICmpNE(Inc, Bound, Name + ".cond");
  BranchInst::Create(Header, Exit, Cond, Latch);
  IV->addIncoming(Inc, Latch);

  BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
  BasicBlock *Tmp = PreheaderBr->getSuccessor(0);
  PreheaderBr->setSuccessor(0, Header);
  DTU.applyUpdatesPermissive({
      {DominatorTree::Delete, Preheader, Tmp},
      {DominatorTree::Insert, Header, Body},
      {DominatorTree::Insert, Body, Latch},
      {DominatorTree::Insert, Latch, Header},
      {DominatorTree::Insert, Latch, Exit},
      {DominatorTree::Insert, Preheader, Header},
  });
  if (LI) {
    L->addBasicBlockToLoop(Header, *LI);
    L->addBasicBlockToLoop(Body, *LI);
    L->addBasicBlockToLoop(Latch, *LI);
  }
  return Body;
}

template <bool IsTileLoad>
Value *X86LowerAMXIntrinsics::createTileLoadStoreLoops(
    BasicBlock *Start, BasicBlock *End, IRBuilderBase &B, Value *Row,
    Value *Col, Value *Ptr, Value *Stride, Value *Tile) {
  std::string IntrinName = IsTileLoad ? "tileload" : "tilestore";
  Loop *RowLoop = nullptr;
  Loop *ColLoop = nullptr;
  if (LI) {
    RowLoop = LI->AllocateLoop();
    ColLoop = LI->AllocateLoop();
    RowLoop->addChildLoop(ColLoop);
    if (Loop *ParentL = LI->getLoopFor(Start))
      ParentL->addChildLoop(RowLoop);
    else
      LI->addTopLevelLoop(RowLoop);
  }

  BasicBlock *RowBody = createLoop(Start, End, Row, B.getInt16(1),
                                   IntrinName + ".scalarize.rows", B, RowLoop);
  BasicBlock *RowLatch = RowBody->getSingleSuccessor();

  BasicBlock *ColBody = createLoop(RowBody, RowLatch, Col, B.getInt16(1),
                                   IntrinName + ".scalarize.cols", B, ColLoop);

  BasicBlock *ColLoopLatch = ColBody->getSingleSuccessor();
  BasicBlock *ColLoopHeader = ColBody->getSinglePredecessor();
  BasicBlock *RowLoopHeader = RowBody->getSinglePredecessor();
  Value *CurrentRow = &*RowLoopHeader->begin();
  Value *CurrentCol = &*ColLoopHeader->begin();
  Type *EltTy = B.getInt32Ty();
  FixedVectorType *V256I32Ty = FixedVectorType::get(EltTy, 256);

  // Common part for tileload and tilestore
  // *.scalarize.cols.body:
  // Calculate %idxmem and %idxvec
  B.SetInsertPoint(ColBody->getTerminator());
  Value *CurrentRowZExt = B.CreateZExt(CurrentRow, Stride->getType());
  Value *CurrentColZExt = B.CreateZExt(CurrentCol, Stride->getType());
  Value *Offset =
      B.CreateAdd(B.CreateMul(CurrentRowZExt, Stride), CurrentColZExt);
  unsigned AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
  Value *EltBasePtr = B.CreatePointerCast(Ptr, PointerType::get(EltTy, AS));
  Value *EltPtr = B.CreateGEP(EltTy, EltBasePtr, Offset);
  Value *Idx = B.CreateAdd(B.CreateMul(CurrentRow, B.getInt16(16)), CurrentCol);
  if (IsTileLoad) {
    // tileload.scalarize.rows.header:
    // %vec.phi.row = phi <256 x i32> [ zeroinitializer, %entry ], [ %ResVec,
    // %tileload.scalarize.rows.latch ]
    B.SetInsertPoint(RowLoopHeader->getTerminator());
    Value *VecZero = Constant::getNullValue(V256I32Ty);
    PHINode *VecCPhiRowLoop = B.CreatePHI(V256I32Ty, 2, "vec.phi.row");
    VecCPhiRowLoop->addIncoming(VecZero, Start);

    // tileload.scalarize.cols.header:
    // %vec.phi = phi <256 x i32> [ %vec.phi.row, %tileload.scalarize.rows.body
    // ], [ %ResVec, %tileload.scalarize.cols.latch ]
    B.SetInsertPoint(ColLoopHeader->getTerminator());
    PHINode *VecPhi = B.CreatePHI(V256I32Ty, 2, "vec.phi");
    VecPhi->addIncoming(VecCPhiRowLoop, RowBody);

    // tileload.scalarize.cols.body:
    // Calculate %idxmem and %idxvec
    // %eltptr = getelementptr i32, i32* %base, i64 %idxmem
    // %elt = load i32, i32* %ptr
    // %ResVec = insertelement <256 x i32> %vec.phi, i32 %elt, i16 %idxvec
    B.SetInsertPoint(ColBody->getTerminator());
    Value *Elt = B.CreateLoad(EltTy, EltPtr);
    Value *ResVec = B.CreateInsertElement(VecPhi, Elt, Idx);
    VecPhi->addIncoming(ResVec, ColLoopLatch);
    VecCPhiRowLoop->addIncoming(ResVec, RowLatch);

    return ResVec;
  } else {
    auto *BitCast = cast<BitCastInst>(Tile);
    Value *Vec = BitCast->getOperand(0);
    assert(isV256I32Ty(Vec->getType()) && "bitcast from non-v256i32 to x86amx");
    // tilestore.scalarize.cols.body:
    // %mul = mul i16 %row.iv, i16 16
    // %idx = add i16 %mul, i16 %col.iv
    // %vec = extractelement <16 x i32> %vec, i16 %idx
    // store i32 %vec, i32* %ptr
    B.SetInsertPoint(ColBody->getTerminator());
    Value *Elt = B.CreateExtractElement(Vec, Idx);

    B.CreateStore(Elt, EltPtr);
    return nullptr;
  }
}

template <Intrinsic::ID IntrID>
typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
                            IntrID == Intrinsic::x86_tdpbf16ps_internal,
                        Value *>::type
X86LowerAMXIntrinsics::createTileDPLoops(BasicBlock *Start, BasicBlock *End,
                                         IRBuilderBase &B, Value *Row,
                                         Value *Col, Value *K, Value *Acc,
                                         Value *LHS, Value *RHS) {
  std::string IntrinName =
      IntrID == Intrinsic::x86_tdpbssd_internal ? "tiledpbssd" : "tdpbf16ps";
  Loop *RowLoop = nullptr;
  Loop *ColLoop = nullptr;
  Loop *InnerLoop = nullptr;
  if (LI) {
    RowLoop = LI->AllocateLoop();
    ColLoop = LI->AllocateLoop();
    InnerLoop = LI->AllocateLoop();
    ColLoop->addChildLoop(InnerLoop);
    RowLoop->addChildLoop(ColLoop);
    if (Loop *ParentL = LI->getLoopFor(Start))
      ParentL->addChildLoop(RowLoop);
    else
      LI->addTopLevelLoop(RowLoop);
  }

  BasicBlock *RowBody = createLoop(Start, End, Row, B.getInt16(1),
                                   IntrinName + ".scalarize.rows", B, RowLoop);
  BasicBlock *RowLatch = RowBody->getSingleSuccessor();

  BasicBlock *ColBody = createLoop(RowBody, RowLatch, Col, B.getInt16(1),
                                   IntrinName + ".scalarize.cols", B, ColLoop);

  BasicBlock *ColLoopLatch = ColBody->getSingleSuccessor();

  B.SetInsertPoint(ColBody->getTerminator());
  BasicBlock *InnerBody =
      createLoop(ColBody, ColLoopLatch, K, B.getInt16(1),
                 IntrinName + ".scalarize.inner", B, InnerLoop);

  BasicBlock *ColLoopHeader = ColBody->getSinglePredecessor();
  BasicBlock *RowLoopHeader = RowBody->getSinglePredecessor();
  BasicBlock *InnerLoopHeader = InnerBody->getSinglePredecessor();
  BasicBlock *InnerLoopLatch = InnerBody->getSingleSuccessor();
  Value *CurrentRow = &*RowLoopHeader->begin();
  Value *CurrentCol = &*ColLoopHeader->begin();
  Value *CurrentInner = &*InnerLoopHeader->begin();

  FixedVectorType *V256I32Ty = FixedVectorType::get(B.getInt32Ty(), 256);
  auto *BitCastAcc = cast<BitCastInst>(Acc);
  Value *VecC = BitCastAcc->getOperand(0);
  assert(isV256I32Ty(VecC->getType()) && "bitcast from non-v256i32 to x86amx");
  // TODO else create BitCast from x86amx to v256i32.
  // Store x86amx to memory, and reload from memory
  // to vector. However with -O0, it doesn't happen.
  auto *BitCastLHS = cast<BitCastInst>(LHS);
  Value *VecA = BitCastLHS->getOperand(0);
  assert(isV256I32Ty(VecA->getType()) && "bitcast from non-v256i32 to x86amx");
  auto *BitCastRHS = cast<BitCastInst>(RHS);
  Value *VecB = BitCastRHS->getOperand(0);
  assert(isV256I32Ty(VecB->getType()) && "bitcast from non-v256i32 to x86amx");

  // tiledpbssd.scalarize.rows.header:
  // %vec.c.phi.row = phi <256 x i32> [ %VecC, %continue ], [ %NewVecC,
  // %tiledpbssd.scalarize.rows.latch ]

  // %vec.d.phi.row = phi <256 x i32> [ zeroinitializer, %continue ], [
  // %NewVecD, %tiledpbssd.scalarize.rows.latch ]
  B.SetInsertPoint(RowLoopHeader->getTerminator());
  PHINode *VecCPhiRowLoop = B.CreatePHI(V256I32Ty, 2, "vec.c.phi.row");
  VecCPhiRowLoop->addIncoming(VecC, Start);
  Value *VecZero = Constant::getNullValue(V256I32Ty);
  PHINode *VecDPhiRowLoop = B.CreatePHI(V256I32Ty, 2, "vec.d.phi.row");
  VecDPhiRowLoop->addIncoming(VecZero, Start);

  // tiledpbssd.scalarize.cols.header:
  // %vec.c.phi.col = phi <256 x i32> [ %vec.c.phi.row,
  // %tiledpbssd.scalarize.rows.body ], [ %NewVecC,
  // %tiledpbssd.scalarize.cols.latch ]

  // %vec.d.phi.col = phi <256 x i32> [
  // %vec.d.phi.row, %tiledpbssd.scalarize.rows.body ], [ %NewVecD,
  // %tiledpbssd.scalarize.cols.latch ]

  // calculate idxc.
  B.SetInsertPoint(ColLoopHeader->getTerminator());
  PHINode *VecCPhiColLoop = B.CreatePHI(V256I32Ty, 2, "vec.c.phi.col");
  VecCPhiColLoop->addIncoming(VecCPhiRowLoop, RowBody);
  PHINode *VecDPhiColLoop = B.CreatePHI(V256I32Ty, 2, "vec.d.phi.col");
  VecDPhiColLoop->addIncoming(VecDPhiRowLoop, RowBody);
  Value *IdxC =
      B.CreateAdd(B.CreateMul(CurrentRow, B.getInt16(16)), CurrentCol);

  // tiledpbssd.scalarize.inner.header:
  // %vec.c.inner.phi = phi <256 x i32> [ %vec.c.phi.col,
  // %tiledpbssd.scalarize.cols.body ], [ %NewVecC,
  // %tiledpbssd.scalarize.inner.latch ]

  B.SetInsertPoint(InnerLoopHeader->getTerminator());
  PHINode *VecCPhi = B.CreatePHI(V256I32Ty, 2, "vec.c.inner.phi");
  VecCPhi->addIncoming(VecCPhiColLoop, ColBody);

  B.SetInsertPoint(InnerBody->getTerminator());
  Value *IdxA =
      B.CreateAdd(B.CreateMul(CurrentRow, B.getInt16(16)), CurrentInner);
  Value *IdxB =
      B.CreateAdd(B.CreateMul(CurrentInner, B.getInt16(16)), CurrentCol);
  Value *NewVecC = nullptr;

  if (IntrID == Intrinsic::x86_tdpbssd_internal) {
    // tiledpbssd.scalarize.inner.body:
    // calculate idxa, idxb
    // %eltc = extractelement <256 x i32> %vec.c.inner.phi, i16 %idxc
    // %elta = extractelement <256 x i32> %veca, i16 %idxa
    // %eltav4i8 = bitcast i32 %elta to <4 x i8>
    // %eltb = extractelement <256 x i32> %vecb, i16 %idxb
    // %eltbv4i8 = bitcast i32 %eltb to <4 x i8>
    // %eltav4i32 = sext <4 x i8> %eltav4i8 to <4 x i32>
    // %eltbv4i32 = sext <4 x i8> %eltbv4i8 to <4 x i32>
    // %mulab = mul <4 x i32> %eltbv4i32, %eltav4i32
    // %acc = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> %131)
    // %neweltc = add i32 %elt, %acc
    // %NewVecC = insertelement <256 x i32> %vec.c.inner.phi, i32 %neweltc,
    // i16 %idxc
    FixedVectorType *V4I8Ty = FixedVectorType::get(B.getInt8Ty(), 4);
    FixedVectorType *V4I32Ty = FixedVectorType::get(B.getInt32Ty(), 4);
    Value *EltC = B.CreateExtractElement(VecCPhi, IdxC);
    Value *EltA = B.CreateExtractElement(VecA, IdxA);
    Value *SubVecA = B.CreateBitCast(EltA, V4I8Ty);
    Value *EltB = B.CreateExtractElement(VecB, IdxB);
    Value *SubVecB = B.CreateBitCast(EltB, V4I8Ty);
    Value *SEXTSubVecB = B.CreateSExt(SubVecB, V4I32Ty);
    Value *SEXTSubVecA = B.CreateSExt(SubVecA, V4I32Ty);
    Value *SubVecR = B.CreateAddReduce(B.CreateMul(SEXTSubVecA, SEXTSubVecB));
    Value *ResElt = B.CreateAdd(EltC, SubVecR);
    NewVecC = B.CreateInsertElement(VecCPhi, ResElt, IdxC);
  } else if (IntrID == Intrinsic::x86_tdpbf16ps_internal) {
    // tiledpbf16ps.scalarize.inner.body:
    // calculate idxa, idxb, idxc
    // %eltc = extractelement <256 x i32> %vec.c.inner.phi, i16 %idxc
    // %eltcf32 = bitcast i32 %eltc to float
    // %elta = extractelement <256 x i32> %veca, i16 %idxa
    // %eltav2i16 = bitcast i32 %elta to <2 x i16>
    // %eltb = extractelement <256 x i32> %vecb, i16 %idxb
    // %eltbv2i16 = bitcast i32 %eltb to <2 x i16>
    // %shufflea = shufflevector <2 x i16> %elta, <2 x i16> zeroinitializer, <4
    // x i32> <i32 2, i32 0, i32 3, i32 1>
    // %eltav2f32 = bitcast <4 x i16> %shufflea to <2 x float>
    // %shuffleb = shufflevector <2 x i16> %eltb, <2 xi16> zeroinitializer, <4 x
    // i32> <i32 2, i32 0, i32 3, i32 1>
    // %eltbv2f32 = bitcast <4 x i16> %shuffleb to <2 x float>
    // %mulab = fmul <2 x float> %eltav2f32, %eltbv2f32
    // %acc = call float
    // @llvm.vector.reduce.fadd.v2f32(float %eltcf32, <2 x float> %mulab)
    // %neweltc = bitcast float %acc to i32
    // %NewVecC = insertelement <256 x i32> %vec.c.inner.phi, i32 %neweltc,
    // i16 %idxc
    // %NewVecD = insertelement <256 x i32> %vec.d.inner.phi, i32 %neweltc,
    // i16 %idxc
    FixedVectorType *V2I16Ty = FixedVectorType::get(B.getInt16Ty(), 2);
    FixedVectorType *V2F32Ty = FixedVectorType::get(B.getFloatTy(), 2);
    Value *EltC = B.CreateExtractElement(VecCPhi, IdxC);
    Value *EltCF32 = B.CreateBitCast(EltC, B.getFloatTy());
    Value *EltA = B.CreateExtractElement(VecA, IdxA);
    Value *SubVecA = B.CreateBitCast(EltA, V2I16Ty);
    Value *EltB = B.CreateExtractElement(VecB, IdxB);
    Value *SubVecB = B.CreateBitCast(EltB, V2I16Ty);
    Value *ZeroV2I16 = Constant::getNullValue(V2I16Ty);
    int ShuffleMask[4] = {2, 0, 3, 1};
    auto ShuffleArray = makeArrayRef(ShuffleMask);
    Value *AV2F32 = B.CreateBitCast(
        B.CreateShuffleVector(SubVecA, ZeroV2I16, ShuffleArray), V2F32Ty);
    Value *BV2F32 = B.CreateBitCast(
        B.CreateShuffleVector(SubVecB, ZeroV2I16, ShuffleArray), V2F32Ty);
    Value *SubVecR = B.CreateFAddReduce(EltCF32, B.CreateFMul(AV2F32, BV2F32));
    Value *ResElt = B.CreateBitCast(SubVecR, B.getInt32Ty());
    NewVecC = B.CreateInsertElement(VecCPhi, ResElt, IdxC);
  }

  // tiledpbssd.scalarize.cols.latch:
  // %NewEltC = extractelement <256 x i32> %vec.c.phi.col, i16 %idxc
  // %NewVecD = insertelement <256 x i32> %vec.d.phi.col, i32 %NewEltC,
  // i16 %idxc
  B.SetInsertPoint(ColLoopLatch->getTerminator());
  Value *NewEltC = B.CreateExtractElement(NewVecC, IdxC);
  Value *NewVecD = B.CreateInsertElement(VecDPhiColLoop, NewEltC, IdxC);

  VecCPhi->addIncoming(NewVecC, InnerLoopLatch);
  VecCPhiRowLoop->addIncoming(NewVecC, RowLatch);
  VecCPhiColLoop->addIncoming(NewVecC, ColLoopLatch);
  VecDPhiRowLoop->addIncoming(NewVecD, RowLatch);
  VecDPhiColLoop->addIncoming(NewVecD, ColLoopLatch);

  return NewVecD;
}

template <Intrinsic::ID IntrID>
typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
                            IntrID == Intrinsic::x86_tdpbf16ps_internal,
                        bool>::type
X86LowerAMXIntrinsics::lowerTileDP(Instruction *TileDP) {
  Value *M, *N, *K, *C, *A, *B;
  match(TileDP, m_Intrinsic<IntrID>(m_Value(M), m_Value(N), m_Value(K),
                                    m_Value(C), m_Value(A), m_Value(B)));
  Instruction *InsertI = TileDP;
  IRBuilder<> PreBuilder(TileDP);
  PreBuilder.SetInsertPoint(TileDP);
  // We visit the loop with (m, n/4, k/4):
  // %n_dword = lshr i16 %n, 2
  // %k_dword = lshr i16 %k, 2
  Value *NDWord = PreBuilder.CreateLShr(N, PreBuilder.getInt16(2));
  Value *KDWord = PreBuilder.CreateLShr(K, PreBuilder.getInt16(2));
  BasicBlock *Start = InsertI->getParent();
  BasicBlock *End =
      SplitBlock(InsertI->getParent(), InsertI, &DTU, LI, nullptr, "continue");
  IRBuilder<> Builder(TileDP);
  Value *ResVec = createTileDPLoops<IntrID>(Start, End, Builder, M, NDWord,
                                            KDWord, C, A, B);
  // we cannot assume there always be bitcast after tiledpbssd. So we need to
  // insert one bitcast as required
  Builder.SetInsertPoint(End->getFirstNonPHI());
  Value *ResAMX =
      Builder.CreateBitCast(ResVec, Type::getX86_AMXTy(Builder.getContext()));
  // Delete TileDP intrinsic and do some clean-up.
  for (auto UI = TileDP->use_begin(), UE = TileDP->use_end(); UI != UE;) {
    Instruction *I = cast<Instruction>((UI++)->getUser());
    Value *Vec;
    if (match(I, m_BitCast(m_Value(Vec)))) {
      I->replaceAllUsesWith(ResVec);
      I->eraseFromParent();
    }
  }
  TileDP->replaceAllUsesWith(ResAMX);
  TileDP->eraseFromParent();
  return true;
}

template <bool IsTileLoad>
bool X86LowerAMXIntrinsics::lowerTileLoadStore(Instruction *TileLoadStore) {
  Value *M, *N, *Ptr, *Stride, *Tile;
  if (IsTileLoad)
    match(TileLoadStore,
          m_Intrinsic<Intrinsic::x86_tileloadd64_internal>(
              m_Value(M), m_Value(N), m_Value(Ptr), m_Value(Stride)));
  else
    match(TileLoadStore, m_Intrinsic<Intrinsic::x86_tilestored64_internal>(
                             m_Value(M), m_Value(N), m_Value(Ptr),
                             m_Value(Stride), m_Value(Tile)));

  Instruction *InsertI = TileLoadStore;
  IRBuilder<> PreBuilder(TileLoadStore);
  PreBuilder.SetInsertPoint(TileLoadStore);
  Value *NDWord = PreBuilder.CreateLShr(N, PreBuilder.getInt16(2));
  Value *StrideDWord = PreBuilder.CreateLShr(Stride, PreBuilder.getInt64(2));
  BasicBlock *Start = InsertI->getParent();
  BasicBlock *End =
      SplitBlock(InsertI->getParent(), InsertI, &DTU, LI, nullptr, "continue");
  IRBuilder<> Builder(TileLoadStore);
  Value *ResVec = createTileLoadStoreLoops<IsTileLoad>(
      Start, End, Builder, M, NDWord, Ptr, StrideDWord,
      IsTileLoad ? nullptr : Tile);
  if (IsTileLoad) {
    // we cannot assume there always be bitcast after tileload. So we need to
    // insert one bitcast as required
    Builder.SetInsertPoint(End->getFirstNonPHI());
    Value *ResAMX =
        Builder.CreateBitCast(ResVec, Type::getX86_AMXTy(Builder.getContext()));
    // Delete tileloadd6 intrinsic and do some clean-up
    for (auto UI = TileLoadStore->use_begin(), UE = TileLoadStore->use_end();
         UI != UE;) {
      Instruction *I = cast<Instruction>((UI++)->getUser());
      Value *Vec;
      if (match(I, m_BitCast(m_Value(Vec)))) {
        I->replaceAllUsesWith(ResVec);
        I->eraseFromParent();
      }
    }
    TileLoadStore->replaceAllUsesWith(ResAMX);
  }
  TileLoadStore->eraseFromParent();
  return true;
}

bool X86LowerAMXIntrinsics::lowerTileZero(Instruction *TileZero) {
  IRBuilder<> Builder(TileZero);
  FixedVectorType *V256I32Ty = FixedVectorType::get(Builder.getInt32Ty(), 256);
  Value *VecZero = Constant::getNullValue(V256I32Ty);
  for (auto UI = TileZero->use_begin(), UE = TileZero->use_end(); UI != UE;) {
    Instruction *I = cast<Instruction>((UI++)->getUser());
    Value *Vec;
    if (match(I, m_BitCast(m_Value(Vec)))) {
      I->replaceAllUsesWith(VecZero);
      I->eraseFromParent();
    }
  }
  TileZero->eraseFromParent();
  return true;
}

bool X86LowerAMXIntrinsics::visit() {
  bool C = false;
  SmallVector<IntrinsicInst *, 8> WorkList;
  for (BasicBlock *BB : depth_first(&Func)) {
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
      if (auto *Inst = dyn_cast<IntrinsicInst>(&*II++)) {
        switch (Inst->getIntrinsicID()) {
        case Intrinsic::x86_tdpbssd_internal:
        case Intrinsic::x86_tileloadd64_internal:
        case Intrinsic::x86_tilestored64_internal:
        case Intrinsic::x86_tilezero_internal:
        case Intrinsic::x86_tdpbf16ps_internal:
          WorkList.push_back(Inst);
          break;
        default:
          break;
        }
      }
    }
  }

  for (auto *Inst : WorkList) {
    switch (Inst->getIntrinsicID()) {
    case Intrinsic::x86_tdpbssd_internal:
      C = lowerTileDP<Intrinsic::x86_tdpbssd_internal>(Inst) || C;
      break;
    case Intrinsic::x86_tdpbf16ps_internal:
      C = lowerTileDP<Intrinsic::x86_tdpbf16ps_internal>(Inst) || C;
      break;
    case Intrinsic::x86_tileloadd64_internal:
      C = lowerTileLoadStore<true>(Inst) || C;
      break;
    case Intrinsic::x86_tilestored64_internal:
      C = lowerTileLoadStore<false>(Inst) || C;
      break;
    case Intrinsic::x86_tilezero_internal:
      C = lowerTileZero(Inst) || C;
      break;
    default:
      llvm_unreachable("invalid amx intrinsics!");
    }
  }

  return C;
}
} // anonymous namespace

namespace {

class X86LowerAMXIntrinsicsLegacyPass : public FunctionPass {
public:
  static char ID;

  X86LowerAMXIntrinsicsLegacyPass() : FunctionPass(ID) {
    initializeX86LowerAMXIntrinsicsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
    if (!F.hasFnAttribute(Attribute::OptimizeNone) &&
        TM->getOptLevel() != CodeGenOpt::None)
      return false;

    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
    auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);

    X86LowerAMXIntrinsics LAT(F, DTU, LI);
    return LAT.visit();
  }
  StringRef getPassName() const override { return "Lower AMX intrinsics"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
  }
};

} // anonymous namespace

static const char PassName[] = "Lower AMX intrinsics";
char X86LowerAMXIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXIntrinsicsLegacyPass, DEBUG_TYPE, PassName,
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(X86LowerAMXIntrinsicsLegacyPass, DEBUG_TYPE, PassName,
                    false, false)

FunctionPass *llvm::createX86LowerAMXIntrinsicsPass() {
  return new X86LowerAMXIntrinsicsLegacyPass();
}