aboutsummaryrefslogtreecommitdiff
blob: 9985c9adcf6c1073ad1e1d2f2f28d98b89d7ffc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//===- xray-account.h - XRay Function Call Accounting ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements basic function call accounting from an XRay trace.
//
//===----------------------------------------------------------------------===//

#include <algorithm>
#include <cassert>
#include <numeric>
#include <system_error>
#include <utility>

#include "xray-account.h"
#include "xray-registry.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"

using namespace llvm;
using namespace llvm::xray;

static cl::SubCommand Account("account", "Function call accounting");
static cl::opt<std::string> AccountInput(cl::Positional,
                                         cl::desc("<xray log file>"),
                                         cl::Required, cl::sub(Account));
static cl::opt<bool>
    AccountKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
                     cl::sub(Account), cl::init(false));
static cl::alias AccountKeepGoing2("k", cl::aliasopt(AccountKeepGoing),
                                   cl::desc("Alias for -keep_going"),
                                   cl::sub(Account));
static cl::opt<bool> AccountDeduceSiblingCalls(
    "deduce-sibling-calls",
    cl::desc("Deduce sibling calls when unrolling function call stacks"),
    cl::sub(Account), cl::init(false));
static cl::alias
    AccountDeduceSiblingCalls2("d", cl::aliasopt(AccountDeduceSiblingCalls),
                               cl::desc("Alias for -deduce_sibling_calls"),
                               cl::sub(Account));
static cl::opt<std::string>
    AccountOutput("output", cl::value_desc("output file"), cl::init("-"),
                  cl::desc("output file; use '-' for stdout"),
                  cl::sub(Account));
static cl::alias AccountOutput2("o", cl::aliasopt(AccountOutput),
                                cl::desc("Alias for -output"),
                                cl::sub(Account));
enum class AccountOutputFormats { TEXT, CSV };
static cl::opt<AccountOutputFormats>
    AccountOutputFormat("format", cl::desc("output format"),
                        cl::values(clEnumValN(AccountOutputFormats::TEXT,
                                              "text", "report stats in text"),
                                   clEnumValN(AccountOutputFormats::CSV, "csv",
                                              "report stats in csv")),
                        cl::sub(Account));
static cl::alias AccountOutputFormat2("f", cl::desc("Alias of -format"),
                                      cl::aliasopt(AccountOutputFormat),
                                      cl::sub(Account));

enum class SortField {
  FUNCID,
  COUNT,
  MIN,
  MED,
  PCT90,
  PCT99,
  MAX,
  SUM,
  FUNC,
};

static cl::opt<SortField> AccountSortOutput(
    "sort", cl::desc("sort output by this field"), cl::value_desc("field"),
    cl::sub(Account), cl::init(SortField::FUNCID),
    cl::values(clEnumValN(SortField::FUNCID, "funcid", "function id"),
               clEnumValN(SortField::COUNT, "count", "funciton call counts"),
               clEnumValN(SortField::MIN, "min", "minimum function durations"),
               clEnumValN(SortField::MED, "med", "median function durations"),
               clEnumValN(SortField::PCT90, "90p", "90th percentile durations"),
               clEnumValN(SortField::PCT99, "99p", "99th percentile durations"),
               clEnumValN(SortField::MAX, "max", "maximum function durations"),
               clEnumValN(SortField::SUM, "sum", "sum of call durations"),
               clEnumValN(SortField::FUNC, "func", "function names")));
static cl::alias AccountSortOutput2("s", cl::aliasopt(AccountSortOutput),
                                    cl::desc("Alias for -sort"),
                                    cl::sub(Account));

enum class SortDirection {
  ASCENDING,
  DESCENDING,
};
static cl::opt<SortDirection> AccountSortOrder(
    "sortorder", cl::desc("sort ordering"), cl::init(SortDirection::ASCENDING),
    cl::values(clEnumValN(SortDirection::ASCENDING, "asc", "ascending"),
               clEnumValN(SortDirection::DESCENDING, "dsc", "descending")),
    cl::sub(Account));
static cl::alias AccountSortOrder2("r", cl::aliasopt(AccountSortOrder),
                                   cl::desc("Alias for -sortorder"),
                                   cl::sub(Account));

static cl::opt<int> AccountTop("top", cl::desc("only show the top N results"),
                               cl::value_desc("N"), cl::sub(Account),
                               cl::init(-1));
static cl::alias AccountTop2("p", cl::desc("Alias for -top"),
                             cl::aliasopt(AccountTop), cl::sub(Account));

static cl::opt<std::string>
    AccountInstrMap("instr_map",
                    cl::desc("binary with the instrumentation map, or "
                             "a separate instrumentation map"),
                    cl::value_desc("binary with xray_instr_map"),
                    cl::sub(Account), cl::init(""));
static cl::alias AccountInstrMap2("m", cl::aliasopt(AccountInstrMap),
                                  cl::desc("Alias for -instr_map"),
                                  cl::sub(Account));

namespace {

template <class T, class U> void setMinMax(std::pair<T, T> &MM, U &&V) {
  if (MM.first == 0 || MM.second == 0)
    MM = std::make_pair(std::forward<U>(V), std::forward<U>(V));
  else
    MM = std::make_pair(std::min(MM.first, V), std::max(MM.second, V));
}

template <class T> T diff(T L, T R) { return std::max(L, R) - std::min(L, R); }

} // namespace

bool LatencyAccountant::accountRecord(const XRayRecord &Record) {
  setMinMax(PerThreadMinMaxTSC[Record.TId], Record.TSC);
  setMinMax(PerCPUMinMaxTSC[Record.CPU], Record.TSC);

  if (CurrentMaxTSC == 0)
    CurrentMaxTSC = Record.TSC;

  if (Record.TSC < CurrentMaxTSC)
    return false;

  auto &ThreadStack = PerThreadFunctionStack[Record.TId];
  switch (Record.Type) {
  case RecordTypes::CUSTOM_EVENT:
  case RecordTypes::TYPED_EVENT:
    // TODO: Support custom and typed event accounting in the future.
    return true;
  case RecordTypes::ENTER:
  case RecordTypes::ENTER_ARG: {
    ThreadStack.emplace_back(Record.FuncId, Record.TSC);
    break;
  }
  case RecordTypes::EXIT:
  case RecordTypes::TAIL_EXIT: {
    if (ThreadStack.empty())
      return false;

    if (ThreadStack.back().first == Record.FuncId) {
      const auto &Top = ThreadStack.back();
      recordLatency(Top.first, diff(Top.second, Record.TSC));
      ThreadStack.pop_back();
      break;
    }

    if (!DeduceSiblingCalls)
      return false;

    // Look for the parent up the stack.
    auto Parent =
        std::find_if(ThreadStack.rbegin(), ThreadStack.rend(),
                     [&](const std::pair<const int32_t, uint64_t> &E) {
                       return E.first == Record.FuncId;
                     });
    if (Parent == ThreadStack.rend())
      return false;

    // Account time for this apparently sibling call exit up the stack.
    // Considering the following case:
    //
    //   f()
    //    g()
    //      h()
    //
    // We might only ever see the following entries:
    //
    //   -> f()
    //   -> g()
    //   -> h()
    //   <- h()
    //   <- f()
    //
    // Now we don't see the exit to g() because some older version of the XRay
    // runtime wasn't instrumenting tail exits. If we don't deduce tail calls,
    // we may potentially never account time for g() -- and this code would have
    // already bailed out, because `<- f()` doesn't match the current "top" of
    // stack where we're waiting for the exit to `g()` instead. This is not
    // ideal and brittle -- so instead we provide a potentially inaccurate
    // accounting of g() instead, computing it from the exit of f().
    //
    // While it might be better that we account the time between `-> g()` and
    // `-> h()` as the proper accounting of time for g() here, this introduces
    // complexity to do correctly (need to backtrack, etc.).
    //
    // FIXME: Potentially implement the more complex deduction algorithm?
    auto I = std::next(Parent).base();
    for (auto &E : make_range(I, ThreadStack.end())) {
      recordLatency(E.first, diff(E.second, Record.TSC));
    }
    ThreadStack.erase(I, ThreadStack.end());
    break;
  }
  }

  return true;
}

namespace {

// We consolidate the data into a struct which we can output in various forms.
struct ResultRow {
  uint64_t Count;
  double Min;
  double Median;
  double Pct90;
  double Pct99;
  double Max;
  double Sum;
  std::string DebugInfo;
  std::string Function;
};

ResultRow getStats(std::vector<uint64_t> &Timings) {
  assert(!Timings.empty());
  ResultRow R;
  R.Sum = std::accumulate(Timings.begin(), Timings.end(), 0.0);
  auto MinMax = std::minmax_element(Timings.begin(), Timings.end());
  R.Min = *MinMax.first;
  R.Max = *MinMax.second;
  R.Count = Timings.size();

  auto MedianOff = Timings.size() / 2;
  std::nth_element(Timings.begin(), Timings.begin() + MedianOff, Timings.end());
  R.Median = Timings[MedianOff];

  auto Pct90Off = std::floor(Timings.size() * 0.9);
  std::nth_element(Timings.begin(), Timings.begin() + Pct90Off, Timings.end());
  R.Pct90 = Timings[Pct90Off];

  auto Pct99Off = std::floor(Timings.size() * 0.99);
  std::nth_element(Timings.begin(), Timings.begin() + Pct99Off, Timings.end());
  R.Pct99 = Timings[Pct99Off];
  return R;
}

} // namespace

using TupleType = std::tuple<int32_t, uint64_t, ResultRow>;

template <typename F>
static void sortByKey(std::vector<TupleType> &Results, F Fn) {
  bool ASC = AccountSortOrder == SortDirection::ASCENDING;
  llvm::sort(Results, [=](const TupleType &L, const TupleType &R) {
    return ASC ? Fn(L) < Fn(R) : Fn(L) > Fn(R);
  });
}

template <class F>
void LatencyAccountant::exportStats(const XRayFileHeader &Header, F Fn) const {
  std::vector<TupleType> Results;
  Results.reserve(FunctionLatencies.size());
  for (auto FT : FunctionLatencies) {
    const auto &FuncId = FT.first;
    auto &Timings = FT.second;
    Results.emplace_back(FuncId, Timings.size(), getStats(Timings));
    auto &Row = std::get<2>(Results.back());
    if (Header.CycleFrequency) {
      double CycleFrequency = Header.CycleFrequency;
      Row.Min /= CycleFrequency;
      Row.Median /= CycleFrequency;
      Row.Pct90 /= CycleFrequency;
      Row.Pct99 /= CycleFrequency;
      Row.Max /= CycleFrequency;
      Row.Sum /= CycleFrequency;
    }

    Row.Function = FuncIdHelper.SymbolOrNumber(FuncId);
    Row.DebugInfo = FuncIdHelper.FileLineAndColumn(FuncId);
  }

  // Sort the data according to user-provided flags.
  switch (AccountSortOutput) {
  case SortField::FUNCID:
    sortByKey(Results, [](const TupleType &X) { return std::get<0>(X); });
    break;
  case SortField::COUNT:
    sortByKey(Results, [](const TupleType &X) { return std::get<1>(X); });
    break;
  case SortField::MIN:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Min; });
    break;
  case SortField::MED:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Median; });
    break;
  case SortField::PCT90:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Pct90; });
    break;
  case SortField::PCT99:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Pct99; });
    break;
  case SortField::MAX:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Max; });
    break;
  case SortField::SUM:
    sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Sum; });
    break;
  case SortField::FUNC:
    llvm_unreachable("Not implemented");
  }

  if (AccountTop > 0) {
    auto MaxTop =
        std::min(AccountTop.getValue(), static_cast<int>(Results.size()));
    Results.erase(Results.begin() + MaxTop, Results.end());
  }

  for (const auto &R : Results)
    Fn(std::get<0>(R), std::get<1>(R), std::get<2>(R));
}

void LatencyAccountant::exportStatsAsText(raw_ostream &OS,
                                          const XRayFileHeader &Header) const {
  OS << "Functions with latencies: " << FunctionLatencies.size() << "\n";

  // We spend some effort to make the text output more readable, so we do the
  // following formatting decisions for each of the fields:
  //
  //   - funcid: 32-bit, but we can determine the largest number and be
  //   between
  //     a minimum of 5 characters, up to 9 characters, right aligned.
  //   - count:  64-bit, but we can determine the largest number and be
  //   between
  //     a minimum of 5 characters, up to 9 characters, right aligned.
  //   - min, median, 90pct, 99pct, max: double precision, but we want to keep
  //     the values in seconds, with microsecond precision (0.000'001), so we
  //     have at most 6 significant digits, with the whole number part to be
  //     at
  //     least 1 character. For readability we'll right-align, with full 9
  //     characters each.
  //   - debug info, function name: we format this as a concatenation of the
  //     debug info and the function name.
  //
  static constexpr char StatsHeaderFormat[] =
      "{0,+9} {1,+10} [{2,+9}, {3,+9}, {4,+9}, {5,+9}, {6,+9}] {7,+9}";
  static constexpr char StatsFormat[] =
      R"({0,+9} {1,+10} [{2,+9:f6}, {3,+9:f6}, {4,+9:f6}, {5,+9:f6}, {6,+9:f6}] {7,+9:f6})";
  OS << llvm::formatv(StatsHeaderFormat, "funcid", "count", "min", "med", "90p",
                      "99p", "max", "sum")
     << llvm::formatv("  {0,-12}\n", "function");
  exportStats(Header, [&](int32_t FuncId, size_t Count, const ResultRow &Row) {
    OS << llvm::formatv(StatsFormat, FuncId, Count, Row.Min, Row.Median,
                        Row.Pct90, Row.Pct99, Row.Max, Row.Sum)
       << "  " << Row.DebugInfo << ": " << Row.Function << "\n";
  });
}

void LatencyAccountant::exportStatsAsCSV(raw_ostream &OS,
                                         const XRayFileHeader &Header) const {
  OS << "funcid,count,min,median,90%ile,99%ile,max,sum,debug,function\n";
  exportStats(Header, [&](int32_t FuncId, size_t Count, const ResultRow &Row) {
    OS << FuncId << ',' << Count << ',' << Row.Min << ',' << Row.Median << ','
       << Row.Pct90 << ',' << Row.Pct99 << ',' << Row.Max << "," << Row.Sum
       << ",\"" << Row.DebugInfo << "\",\"" << Row.Function << "\"\n";
  });
}

using namespace llvm::xray;

namespace llvm {
template <> struct format_provider<llvm::xray::RecordTypes> {
  static void format(const llvm::xray::RecordTypes &T, raw_ostream &Stream,
                     StringRef Style) {
    switch (T) {
    case RecordTypes::ENTER:
      Stream << "enter";
      break;
    case RecordTypes::ENTER_ARG:
      Stream << "enter-arg";
      break;
    case RecordTypes::EXIT:
      Stream << "exit";
      break;
    case RecordTypes::TAIL_EXIT:
      Stream << "tail-exit";
      break;
    case RecordTypes::CUSTOM_EVENT:
      Stream << "custom-event";
      break;
    case RecordTypes::TYPED_EVENT:
      Stream << "typed-event";
      break;
    }
  }
};
} // namespace llvm

static CommandRegistration Unused(&Account, []() -> Error {
  InstrumentationMap Map;
  if (!AccountInstrMap.empty()) {
    auto InstrumentationMapOrError = loadInstrumentationMap(AccountInstrMap);
    if (!InstrumentationMapOrError)
      return joinErrors(make_error<StringError>(
                            Twine("Cannot open instrumentation map '") +
                                AccountInstrMap + "'",
                            std::make_error_code(std::errc::invalid_argument)),
                        InstrumentationMapOrError.takeError());
    Map = std::move(*InstrumentationMapOrError);
  }

  std::error_code EC;
  raw_fd_ostream OS(AccountOutput, EC, sys::fs::OpenFlags::F_Text);
  if (EC)
    return make_error<StringError>(
        Twine("Cannot open file '") + AccountOutput + "' for writing.", EC);

  const auto &FunctionAddresses = Map.getFunctionAddresses();
  symbolize::LLVMSymbolizer::Options Opts(
      symbolize::FunctionNameKind::LinkageName, true, true, false, "");
  symbolize::LLVMSymbolizer Symbolizer(Opts);
  llvm::xray::FuncIdConversionHelper FuncIdHelper(AccountInstrMap, Symbolizer,
                                                  FunctionAddresses);
  xray::LatencyAccountant FCA(FuncIdHelper, AccountDeduceSiblingCalls);
  auto TraceOrErr = loadTraceFile(AccountInput);
  if (!TraceOrErr)
    return joinErrors(
        make_error<StringError>(
            Twine("Failed loading input file '") + AccountInput + "'",
            std::make_error_code(std::errc::executable_format_error)),
        TraceOrErr.takeError());

  auto &T = *TraceOrErr;
  for (const auto &Record : T) {
    if (FCA.accountRecord(Record))
      continue;
    errs()
        << "Error processing record: "
        << llvm::formatv(
               R"({{type: {0}; cpu: {1}; record-type: {2}; function-id: {3}; tsc: {4}; thread-id: {5}; process-id: {6}}})",
               Record.RecordType, Record.CPU, Record.Type, Record.FuncId,
               Record.TSC, Record.TId, Record.PId)
        << '\n';
    for (const auto &ThreadStack : FCA.getPerThreadFunctionStack()) {
      errs() << "Thread ID: " << ThreadStack.first << "\n";
      if (ThreadStack.second.empty()) {
        errs() << "  (empty stack)\n";
        continue;
      }
      auto Level = ThreadStack.second.size();
      for (const auto &Entry : llvm::reverse(ThreadStack.second))
        errs() << "  #" << Level-- << "\t"
               << FuncIdHelper.SymbolOrNumber(Entry.first) << '\n';
    }
    if (!AccountKeepGoing)
      return make_error<StringError>(
          Twine("Failed accounting function calls in file '") + AccountInput +
              "'.",
          std::make_error_code(std::errc::executable_format_error));
  }
  switch (AccountOutputFormat) {
  case AccountOutputFormats::TEXT:
    FCA.exportStatsAsText(OS, T.getFileHeader());
    break;
  case AccountOutputFormats::CSV:
    FCA.exportStatsAsCSV(OS, T.getFileHeader());
    break;
  }

  return Error::success();
});