1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
|
///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits code for use by the "fast" instruction
// selection algorithm. See the comments at the top of
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
//
// This file scans through the target's tablegen instruction-info files
// and extracts instructions with obvious-looking patterns, and it emits
// code to look up these instructions by type and operator.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <utility>
using namespace llvm;
/// InstructionMemo - This class holds additional information about an
/// instruction needed to emit code for it.
///
namespace {
struct InstructionMemo {
std::string Name;
const CodeGenRegisterClass *RC;
std::string SubRegNo;
std::vector<std::string> PhysRegs;
std::string PredicateCheck;
InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
std::string SubRegNo, std::vector<std::string> PhysRegs,
std::string PredicateCheck)
: Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
PhysRegs(std::move(PhysRegs)),
PredicateCheck(std::move(PredicateCheck)) {}
// Make sure we do not copy InstructionMemo.
InstructionMemo(const InstructionMemo &Other) = delete;
InstructionMemo(InstructionMemo &&Other) = default;
};
} // End anonymous namespace
/// ImmPredicateSet - This uniques predicates (represented as a string) and
/// gives them unique (small) integer ID's that start at 0.
namespace {
class ImmPredicateSet {
DenseMap<TreePattern *, unsigned> ImmIDs;
std::vector<TreePredicateFn> PredsByName;
public:
unsigned getIDFor(TreePredicateFn Pred) {
unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
if (Entry == 0) {
PredsByName.push_back(Pred);
Entry = PredsByName.size();
}
return Entry-1;
}
const TreePredicateFn &getPredicate(unsigned i) {
assert(i < PredsByName.size());
return PredsByName[i];
}
typedef std::vector<TreePredicateFn>::const_iterator iterator;
iterator begin() const { return PredsByName.begin(); }
iterator end() const { return PredsByName.end(); }
};
} // End anonymous namespace
/// OperandsSignature - This class holds a description of a list of operand
/// types. It has utility methods for emitting text based on the operands.
///
namespace {
struct OperandsSignature {
class OpKind {
enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
char Repr;
public:
OpKind() : Repr(OK_Invalid) {}
bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
static OpKind getImm(unsigned V) {
assert((unsigned)OK_Imm+V < 128 &&
"Too many integer predicates for the 'Repr' char");
OpKind K; K.Repr = OK_Imm+V; return K;
}
bool isReg() const { return Repr == OK_Reg; }
bool isFP() const { return Repr == OK_FP; }
bool isImm() const { return Repr >= OK_Imm; }
unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
bool StripImmCodes) const {
if (isReg())
OS << 'r';
else if (isFP())
OS << 'f';
else {
OS << 'i';
if (!StripImmCodes)
if (unsigned Code = getImmCode())
OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
}
}
};
SmallVector<OpKind, 3> Operands;
bool operator<(const OperandsSignature &O) const {
return Operands < O.Operands;
}
bool operator==(const OperandsSignature &O) const {
return Operands == O.Operands;
}
bool empty() const { return Operands.empty(); }
bool hasAnyImmediateCodes() const {
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
return true;
return false;
}
/// getWithoutImmCodes - Return a copy of this with any immediate codes forced
/// to zero.
OperandsSignature getWithoutImmCodes() const {
OperandsSignature Result;
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
if (!Operands[i].isImm())
Result.Operands.push_back(Operands[i]);
else
Result.Operands.push_back(OpKind::getImm(0));
return Result;
}
void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
bool EmittedAnything = false;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (!Operands[i].isImm()) continue;
unsigned Code = Operands[i].getImmCode();
if (Code == 0) continue;
if (EmittedAnything)
OS << " &&\n ";
TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
// Emit the type check.
TreePattern *TP = PredFn.getOrigPatFragRecord();
ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
assert(VVT.isSimple() &&
"Cannot use variable value types with fast isel");
OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
OS << PredFn.getFnName() << "(imm" << i <<')';
EmittedAnything = true;
}
}
/// initialize - Examine the given pattern and initialize the contents
/// of the Operands array accordingly. Return true if all the operands
/// are supported, false otherwise.
///
bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
MVT::SimpleValueType VT,
ImmPredicateSet &ImmediatePredicates,
const CodeGenRegisterClass *OrigDstRC) {
if (InstPatNode->isLeaf())
return false;
if (InstPatNode->getOperator()->getName() == "imm") {
Operands.push_back(OpKind::getImm(0));
return true;
}
if (InstPatNode->getOperator()->getName() == "fpimm") {
Operands.push_back(OpKind::getFP());
return true;
}
const CodeGenRegisterClass *DstRC = nullptr;
for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
TreePatternNode *Op = InstPatNode->getChild(i);
// Handle imm operands specially.
if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
unsigned PredNo = 0;
if (!Op->getPredicateCalls().empty()) {
TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
// If there is more than one predicate weighing in on this operand
// then we don't handle it. This doesn't typically happen for
// immediates anyway.
if (Op->getPredicateCalls().size() > 1 ||
!PredFn.isImmediatePattern() || PredFn.usesOperands())
return false;
// Ignore any instruction with 'FastIselShouldIgnore', these are
// not needed and just bloat the fast instruction selector. For
// example, X86 doesn't need to generate code to match ADD16ri8 since
// ADD16ri will do just fine.
Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
if (Rec->getValueAsBit("FastIselShouldIgnore"))
return false;
PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
}
Operands.push_back(OpKind::getImm(PredNo));
continue;
}
// For now, filter out any operand with a predicate.
// For now, filter out any operand with multiple values.
if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
return false;
if (!Op->isLeaf()) {
if (Op->getOperator()->getName() == "fpimm") {
Operands.push_back(OpKind::getFP());
continue;
}
// For now, ignore other non-leaf nodes.
return false;
}
assert(Op->hasConcreteType(0) && "Type infererence not done?");
// For now, all the operands must have the same type (if they aren't
// immediates). Note that this causes us to reject variable sized shifts
// on X86.
if (Op->getSimpleType(0) != VT)
return false;
DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
if (!OpDI)
return false;
Record *OpLeafRec = OpDI->getDef();
// For now, the only other thing we accept is register operands.
const CodeGenRegisterClass *RC = nullptr;
if (OpLeafRec->isSubClassOf("RegisterOperand"))
OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
if (OpLeafRec->isSubClassOf("RegisterClass"))
RC = &Target.getRegisterClass(OpLeafRec);
else if (OpLeafRec->isSubClassOf("Register"))
RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
else if (OpLeafRec->isSubClassOf("ValueType")) {
RC = OrigDstRC;
} else
return false;
// For now, this needs to be a register class of some sort.
if (!RC)
return false;
// For now, all the operands must have the same register class or be
// a strict subclass of the destination.
if (DstRC) {
if (DstRC != RC && !DstRC->hasSubClass(RC))
return false;
} else
DstRC = RC;
Operands.push_back(OpKind::getReg());
}
return true;
}
void PrintParameters(raw_ostream &OS) const {
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (Operands[i].isReg()) {
OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
} else if (Operands[i].isImm()) {
OS << "uint64_t imm" << i;
} else if (Operands[i].isFP()) {
OS << "const ConstantFP *f" << i;
} else {
llvm_unreachable("Unknown operand kind!");
}
if (i + 1 != e)
OS << ", ";
}
}
void PrintArguments(raw_ostream &OS,
const std::vector<std::string> &PR) const {
assert(PR.size() == Operands.size());
bool PrintedArg = false;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (PR[i] != "")
// Implicit physical register operand.
continue;
if (PrintedArg)
OS << ", ";
if (Operands[i].isReg()) {
OS << "Op" << i << ", Op" << i << "IsKill";
PrintedArg = true;
} else if (Operands[i].isImm()) {
OS << "imm" << i;
PrintedArg = true;
} else if (Operands[i].isFP()) {
OS << "f" << i;
PrintedArg = true;
} else {
llvm_unreachable("Unknown operand kind!");
}
}
}
void PrintArguments(raw_ostream &OS) const {
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (Operands[i].isReg()) {
OS << "Op" << i << ", Op" << i << "IsKill";
} else if (Operands[i].isImm()) {
OS << "imm" << i;
} else if (Operands[i].isFP()) {
OS << "f" << i;
} else {
llvm_unreachable("Unknown operand kind!");
}
if (i + 1 != e)
OS << ", ";
}
}
void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
ImmPredicateSet &ImmPredicates,
bool StripImmCodes = false) const {
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (PR[i] != "")
// Implicit physical register operand. e.g. Instruction::Mul expect to
// select to a binary op. On x86, mul may take a single operand with
// the other operand being implicit. We must emit something that looks
// like a binary instruction except for the very inner fastEmitInst_*
// call.
continue;
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
}
}
void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
bool StripImmCodes = false) const {
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
}
};
} // End anonymous namespace
namespace {
class FastISelMap {
// A multimap is needed instead of a "plain" map because the key is
// the instruction's complexity (an int) and they are not unique.
typedef std::multimap<int, InstructionMemo> PredMap;
typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
OperandsOpcodeTypeRetPredMap;
OperandsOpcodeTypeRetPredMap SimplePatterns;
// This is used to check that there are no duplicate predicates
typedef std::multimap<std::string, bool> PredCheckMap;
typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
OperandsOpcodeTypeRetPredCheckMap;
OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
std::map<OperandsSignature, std::vector<OperandsSignature> >
SignaturesWithConstantForms;
StringRef InstNS;
ImmPredicateSet ImmediatePredicates;
public:
explicit FastISelMap(StringRef InstNS);
void collectPatterns(CodeGenDAGPatterns &CGP);
void printImmediatePredicates(raw_ostream &OS);
void printFunctionDefinitions(raw_ostream &OS);
private:
void emitInstructionCode(raw_ostream &OS,
const OperandsSignature &Operands,
const PredMap &PM,
const std::string &RetVTName);
};
} // End anonymous namespace
static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
return CGP.getSDNodeInfo(Op).getEnumName();
}
static std::string getLegalCName(std::string OpName) {
std::string::size_type pos = OpName.find("::");
if (pos != std::string::npos)
OpName.replace(pos, 2, "_");
return OpName;
}
FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
static std::string PhyRegForNode(TreePatternNode *Op,
const CodeGenTarget &Target) {
std::string PhysReg;
if (!Op->isLeaf())
return PhysReg;
Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
if (!OpLeafRec->isSubClassOf("Register"))
return PhysReg;
PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
->getValue();
PhysReg += "::";
PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
return PhysReg;
}
void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
const CodeGenTarget &Target = CGP.getTargetInfo();
// Scan through all the patterns and record the simple ones.
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
E = CGP.ptm_end(); I != E; ++I) {
const PatternToMatch &Pattern = *I;
// For now, just look at Instructions, so that we don't have to worry
// about emitting multiple instructions for a pattern.
TreePatternNode *Dst = Pattern.getDstPattern();
if (Dst->isLeaf()) continue;
Record *Op = Dst->getOperator();
if (!Op->isSubClassOf("Instruction"))
continue;
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
if (II.Operands.empty())
continue;
// Allow instructions to be marked as unavailable for FastISel for
// certain cases, i.e. an ISA has two 'and' instruction which differ
// by what registers they can use but are otherwise identical for
// codegen purposes.
if (II.FastISelShouldIgnore)
continue;
// For now, ignore multi-instruction patterns.
bool MultiInsts = false;
for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
TreePatternNode *ChildOp = Dst->getChild(i);
if (ChildOp->isLeaf())
continue;
if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
MultiInsts = true;
break;
}
}
if (MultiInsts)
continue;
// For now, ignore instructions where the first operand is not an
// output register.
const CodeGenRegisterClass *DstRC = nullptr;
std::string SubRegNo;
if (Op->getName() != "EXTRACT_SUBREG") {
Record *Op0Rec = II.Operands[0].Rec;
if (Op0Rec->isSubClassOf("RegisterOperand"))
Op0Rec = Op0Rec->getValueAsDef("RegClass");
if (!Op0Rec->isSubClassOf("RegisterClass"))
continue;
DstRC = &Target.getRegisterClass(Op0Rec);
if (!DstRC)
continue;
} else {
// If this isn't a leaf, then continue since the register classes are
// a bit too complicated for now.
if (!Dst->getChild(1)->isLeaf()) continue;
DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
if (SR)
SubRegNo = getQualifiedName(SR->getDef());
else
SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
}
// Inspect the pattern.
TreePatternNode *InstPatNode = Pattern.getSrcPattern();
if (!InstPatNode) continue;
if (InstPatNode->isLeaf()) continue;
// Ignore multiple result nodes for now.
if (InstPatNode->getNumTypes() > 1) continue;
Record *InstPatOp = InstPatNode->getOperator();
std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
MVT::SimpleValueType RetVT = MVT::isVoid;
if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
MVT::SimpleValueType VT = RetVT;
if (InstPatNode->getNumChildren()) {
assert(InstPatNode->getChild(0)->getNumTypes() == 1);
VT = InstPatNode->getChild(0)->getSimpleType(0);
}
// For now, filter out any instructions with predicates.
if (!InstPatNode->getPredicateCalls().empty())
continue;
// Check all the operands.
OperandsSignature Operands;
if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
DstRC))
continue;
std::vector<std::string> PhysRegInputs;
if (InstPatNode->getOperator()->getName() == "imm" ||
InstPatNode->getOperator()->getName() == "fpimm")
PhysRegInputs.push_back("");
else {
// Compute the PhysRegs used by the given pattern, and check that
// the mapping from the src to dst patterns is simple.
bool FoundNonSimplePattern = false;
unsigned DstIndex = 0;
for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
if (PhysReg.empty()) {
if (DstIndex >= Dst->getNumChildren() ||
Dst->getChild(DstIndex)->getName() !=
InstPatNode->getChild(i)->getName()) {
FoundNonSimplePattern = true;
break;
}
++DstIndex;
}
PhysRegInputs.push_back(PhysReg);
}
if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
FoundNonSimplePattern = true;
if (FoundNonSimplePattern)
continue;
}
// Check if the operands match one of the patterns handled by FastISel.
std::string ManglingSuffix;
raw_string_ostream SuffixOS(ManglingSuffix);
Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
SuffixOS.flush();
if (!StringSwitch<bool>(ManglingSuffix)
.Cases("", "r", "rr", "ri", "i", "f", true)
.Default(false))
continue;
// Get the predicate that guards this pattern.
std::string PredicateCheck = Pattern.getPredicateCheck();
// Ok, we found a pattern that we can handle. Remember it.
InstructionMemo Memo(
Pattern.getDstPattern()->getOperator()->getName(),
DstRC,
SubRegNo,
PhysRegInputs,
PredicateCheck
);
int complexity = Pattern.getPatternComplexity(CGP);
if (SimplePatternsCheck[Operands][OpcodeName][VT]
[RetVT].count(PredicateCheck)) {
PrintFatalError(Pattern.getSrcRecord()->getLoc(),
"Duplicate predicate in FastISel table!");
}
SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
std::make_pair(PredicateCheck, true));
// Note: Instructions with the same complexity will appear in the order
// that they are encountered.
SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
std::move(Memo));
// If any of the operands were immediates with predicates on them, strip
// them down to a signature that doesn't have predicates so that we can
// associate them with the stripped predicate version.
if (Operands.hasAnyImmediateCodes()) {
SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
.push_back(Operands);
}
}
}
void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
if (ImmediatePredicates.begin() == ImmediatePredicates.end())
return;
OS << "\n// FastEmit Immediate Predicate functions.\n";
for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
E = ImmediatePredicates.end(); I != E; ++I) {
OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
OS << I->getImmediatePredicateCode() << "\n}\n";
}
OS << "\n\n";
}
void FastISelMap::emitInstructionCode(raw_ostream &OS,
const OperandsSignature &Operands,
const PredMap &PM,
const std::string &RetVTName) {
// Emit code for each possible instruction. There may be
// multiple if there are subtarget concerns. A reverse iterator
// is used to produce the ones with highest complexity first.
bool OneHadNoPredicate = false;
for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
PI != PE; ++PI) {
const InstructionMemo &Memo = PI->second;
std::string PredicateCheck = Memo.PredicateCheck;
if (PredicateCheck.empty()) {
assert(!OneHadNoPredicate &&
"Multiple instructions match and more than one had "
"no predicate!");
OneHadNoPredicate = true;
} else {
if (OneHadNoPredicate) {
PrintFatalError("Multiple instructions match and one with no "
"predicate came before one with a predicate! "
"name:" + Memo.Name + " predicate: " + PredicateCheck);
}
OS << " if (" + PredicateCheck + ") {\n";
OS << " ";
}
for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
if (Memo.PhysRegs[i] != "")
OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
<< "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
<< ").addReg(Op" << i << ");\n";
}
OS << " return fastEmitInst_";
if (Memo.SubRegNo.empty()) {
Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
true);
OS << "(" << InstNS << "::" << Memo.Name << ", ";
OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
if (!Operands.empty())
OS << ", ";
Operands.PrintArguments(OS, Memo.PhysRegs);
OS << ");\n";
} else {
OS << "extractsubreg(" << RetVTName
<< ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
}
if (!PredicateCheck.empty()) {
OS << " }\n";
}
}
// Return 0 if all of the possibilities had predicates but none
// were satisfied.
if (!OneHadNoPredicate)
OS << " return 0;\n";
OS << "}\n";
OS << "\n";
}
void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
// Now emit code for all the patterns that we collected.
for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
OE = SimplePatterns.end(); OI != OE; ++OI) {
const OperandsSignature &Operands = OI->first;
const OpcodeTypeRetPredMap &OTM = OI->second;
for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
I != E; ++I) {
const std::string &Opcode = I->first;
const TypeRetPredMap &TM = I->second;
OS << "// FastEmit functions for " << Opcode << ".\n";
OS << "\n";
// Emit one function for each opcode,type pair.
for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
TI != TE; ++TI) {
MVT::SimpleValueType VT = TI->first;
const RetPredMap &RM = TI->second;
if (RM.size() != 1) {
for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
RI != RE; ++RI) {
MVT::SimpleValueType RetVT = RI->first;
const PredMap &PM = RI->second;
OS << "unsigned fastEmit_"
<< getLegalCName(Opcode)
<< "_" << getLegalCName(getName(VT))
<< "_" << getLegalCName(getName(RetVT)) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(";
Operands.PrintParameters(OS);
OS << ") {\n";
emitInstructionCode(OS, Operands, PM, getName(RetVT));
}
// Emit one function for the type that demultiplexes on return type.
OS << "unsigned fastEmit_"
<< getLegalCName(Opcode) << "_"
<< getLegalCName(getName(VT)) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(MVT RetVT";
if (!Operands.empty())
OS << ", ";
Operands.PrintParameters(OS);
OS << ") {\nswitch (RetVT.SimpleTy) {\n";
for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
RI != RE; ++RI) {
MVT::SimpleValueType RetVT = RI->first;
OS << " case " << getName(RetVT) << ": return fastEmit_"
<< getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
<< "_" << getLegalCName(getName(RetVT)) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(";
Operands.PrintArguments(OS);
OS << ");\n";
}
OS << " default: return 0;\n}\n}\n\n";
} else {
// Non-variadic return type.
OS << "unsigned fastEmit_"
<< getLegalCName(Opcode) << "_"
<< getLegalCName(getName(VT)) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(MVT RetVT";
if (!Operands.empty())
OS << ", ";
Operands.PrintParameters(OS);
OS << ") {\n";
OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
<< ")\n return 0;\n";
const PredMap &PM = RM.begin()->second;
emitInstructionCode(OS, Operands, PM, "RetVT");
}
}
// Emit one function for the opcode that demultiplexes based on the type.
OS << "unsigned fastEmit_"
<< getLegalCName(Opcode) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(MVT VT, MVT RetVT";
if (!Operands.empty())
OS << ", ";
Operands.PrintParameters(OS);
OS << ") {\n";
OS << " switch (VT.SimpleTy) {\n";
for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
TI != TE; ++TI) {
MVT::SimpleValueType VT = TI->first;
std::string TypeName = getName(VT);
OS << " case " << TypeName << ": return fastEmit_"
<< getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(RetVT";
if (!Operands.empty())
OS << ", ";
Operands.PrintArguments(OS);
OS << ");\n";
}
OS << " default: return 0;\n";
OS << " }\n";
OS << "}\n";
OS << "\n";
}
OS << "// Top-level FastEmit function.\n";
OS << "\n";
// Emit one function for the operand signature that demultiplexes based
// on opcode and type.
OS << "unsigned fastEmit_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(MVT VT, MVT RetVT, unsigned Opcode";
if (!Operands.empty())
OS << ", ";
Operands.PrintParameters(OS);
OS << ") ";
if (!Operands.hasAnyImmediateCodes())
OS << "override ";
OS << "{\n";
// If there are any forms of this signature available that operate on
// constrained forms of the immediate (e.g., 32-bit sext immediate in a
// 64-bit operand), check them first.
std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
= SignaturesWithConstantForms.find(Operands);
if (MI != SignaturesWithConstantForms.end()) {
// Unique any duplicates out of the list.
llvm::sort(MI->second);
MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
MI->second.end());
// Check each in order it was seen. It would be nice to have a good
// relative ordering between them, but we're not going for optimality
// here.
for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
OS << " if (";
MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
OS << ")\n if (unsigned Reg = fastEmit_";
MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(VT, RetVT, Opcode";
if (!MI->second[i].empty())
OS << ", ";
MI->second[i].PrintArguments(OS);
OS << "))\n return Reg;\n\n";
}
// Done with this, remove it.
SignaturesWithConstantForms.erase(MI);
}
OS << " switch (Opcode) {\n";
for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
I != E; ++I) {
const std::string &Opcode = I->first;
OS << " case " << Opcode << ": return fastEmit_"
<< getLegalCName(Opcode) << "_";
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
OS << "(VT, RetVT";
if (!Operands.empty())
OS << ", ";
Operands.PrintArguments(OS);
OS << ");\n";
}
OS << " default: return 0;\n";
OS << " }\n";
OS << "}\n";
OS << "\n";
}
// TODO: SignaturesWithConstantForms should be empty here.
}
namespace llvm {
void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
CodeGenDAGPatterns CGP(RK);
const CodeGenTarget &Target = CGP.getTargetInfo();
emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
Target.getName().str() + " target", OS);
// Determine the target's namespace name.
StringRef InstNS = Target.getInstNamespace();
assert(!InstNS.empty() && "Can't determine target-specific namespace!");
FastISelMap F(InstNS);
F.collectPatterns(CGP);
F.printImmediatePredicates(OS);
F.printFunctionDefinitions(OS);
}
} // End llvm namespace
|