summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'leptonica/src/grayquant.c')
-rw-r--r--leptonica/src/grayquant.c2913
1 files changed, 2913 insertions, 0 deletions
diff --git a/leptonica/src/grayquant.c b/leptonica/src/grayquant.c
new file mode 100644
index 00000000..a943e561
--- /dev/null
+++ b/leptonica/src/grayquant.c
@@ -0,0 +1,2913 @@
+/*====================================================================*
+ - Copyright (C) 2001 Leptonica. All rights reserved.
+ -
+ - Redistribution and use in source and binary forms, with or without
+ - modification, are permitted provided that the following conditions
+ - are met:
+ - 1. Redistributions of source code must retain the above copyright
+ - notice, this list of conditions and the following disclaimer.
+ - 2. Redistributions in binary form must reproduce the above
+ - copyright notice, this list of conditions and the following
+ - disclaimer in the documentation and/or other materials
+ - provided with the distribution.
+ -
+ - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY
+ - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *====================================================================*/
+
+/*!
+ * \file grayquant.c
+ * <pre>
+ *
+ * Thresholding from 8 bpp to 1 bpp
+ *
+ * Floyd-Steinberg dithering to binary
+ * PIX *pixDitherToBinary()
+ * PIX *pixDitherToBinarySpec()
+ * static void ditherToBinaryLow()
+ * void ditherToBinaryLineLow()
+ *
+ * Simple (pixelwise) binarization with fixed threshold
+ * PIX *pixThresholdToBinary()
+ * static void thresholdToBinaryLow()
+ * void thresholdToBinaryLineLow()
+ *
+ * Binarization with variable threshold
+ * PIX *pixVarThresholdToBinary()
+ *
+ * Binarization by adaptive mapping
+ * PIX *pixAdaptThresholdToBinary()
+ * PIX *pixAdaptThresholdToBinaryGen()
+ *
+ * Generate a binary mask from pixels of particular values
+ * PIX *pixGenerateMaskByValue()
+ * PIX *pixGenerateMaskByBand()
+ *
+ * Thresholding from 8 bpp to 2 bpp
+ *
+ * Floyd-Steinberg-like dithering to 2 bpp
+ * PIX *pixDitherTo2bpp()
+ * PIX *pixDitherTo2bppSpec()
+ * static void ditherTo2bppLow()
+ * static void ditherTo2bppLineLow()
+ * static l_int32 make8To2DitherTables()
+ *
+ * Simple (pixelwise) thresholding to 2 bpp with optional cmap
+ * PIX *pixThresholdTo2bpp()
+ * static void thresholdTo2bppLow()
+ *
+ * Simple (pixelwise) thresholding from 8 bpp to 4 bpp
+ * PIX *pixThresholdTo4bpp()
+ * static void thresholdTo4bppLow()
+ *
+ * Simple (pixelwise) quantization on 8 bpp grayscale
+ * PIX *pixThresholdOn8bpp()
+ *
+ * Arbitrary (pixelwise) thresholding from 8 bpp to 2, 4 or 8 bpp
+ * PIX *pixThresholdGrayArb()
+ *
+ * Quantization tables for linear thresholds of grayscale images
+ * l_int32 *makeGrayQuantIndexTable()
+ * static l_int32 *makeGrayQuantTargetTable()
+ *
+ * Quantization table for arbitrary thresholding of grayscale images
+ * l_int32 makeGrayQuantTableArb()
+ * static l_int32 makeGrayQuantColormapArb()
+ *
+ * Thresholding from 32 bpp rgb to 1 bpp
+ * (really color quantization, but it's better placed in this file)
+ * PIX *pixGenerateMaskByBand32()
+ * PIX *pixGenerateMaskByDiscr32()
+ *
+ * Histogram-based grayscale quantization
+ * PIX *pixGrayQuantFromHisto()
+ * static l_int32 numaFillCmapFromHisto()
+ *
+ * Color quantize grayscale image using existing colormap
+ * PIX *pixGrayQuantFromCmap()
+ * </pre>
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config_auto.h>
+#endif /* HAVE_CONFIG_H */
+
+#include <string.h>
+#include <math.h>
+#include "allheaders.h"
+
+static void ditherToBinaryLow(l_uint32 *datad, l_int32 w, l_int32 h,
+ l_int32 wpld, l_uint32 *datas, l_int32 wpls,
+ l_uint32 *bufs1, l_uint32 *bufs2,
+ l_int32 lowerclip, l_int32 upperclip);
+static void thresholdToBinaryLow(l_uint32 *datad, l_int32 w, l_int32 h,
+ l_int32 wpld, l_uint32 *datas, l_int32 d,
+ l_int32 wpls, l_int32 thresh);
+static void ditherTo2bppLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld,
+ l_uint32 *datas, l_int32 wpls, l_uint32 *bufs1,
+ l_uint32 *bufs2, l_int32 *tabval, l_int32 *tab38,
+ l_int32 *tab14);
+static void ditherTo2bppLineLow(l_uint32 *lined, l_int32 w, l_uint32 *bufs1,
+ l_uint32 *bufs2, l_int32 *tabval,
+ l_int32 *tab38, l_int32 *tab14,
+ l_int32 lastlineflag);
+static l_int32 make8To2DitherTables(l_int32 **ptabval, l_int32 **ptab38,
+ l_int32 **ptab14, l_int32 cliptoblack,
+ l_int32 cliptowhite);
+static void thresholdTo2bppLow(l_uint32 *datad, l_int32 h, l_int32 wpld,
+ l_uint32 *datas, l_int32 wpls, l_int32 *tab);
+static void thresholdTo4bppLow(l_uint32 *datad, l_int32 h, l_int32 wpld,
+ l_uint32 *datas, l_int32 wpls, l_int32 *tab);
+static l_int32 *makeGrayQuantTargetTable(l_int32 nlevels, l_int32 depth);
+static l_int32 makeGrayQuantColormapArb(PIX *pixs, l_int32 *tab,
+ l_int32 outdepth, PIXCMAP **pcmap);
+static l_int32 numaFillCmapFromHisto(NUMA *na, PIXCMAP *cmap,
+ l_float32 minfract, l_int32 maxsize,
+ l_int32 **plut);
+
+#ifndef NO_CONSOLE_IO
+#define DEBUG_UNROLLING 0
+#endif /* ~NO_CONSOLE_IO */
+
+/*------------------------------------------------------------------*
+ * Binarization by Floyd-Steinberg dithering *
+ *------------------------------------------------------------------*/
+/*!
+ * \brief pixDitherToBinary()
+ *
+ * \param[in] pixs
+ * \return pixd dithered binary, or NULL on error
+ *
+ * The Floyd-Steinberg error diffusion dithering algorithm
+ * binarizes an 8 bpp grayscale image to a threshold of 128.
+ * If a pixel has a value above 127, it is binarized to white
+ * and the excess below 255 is subtracted from three
+ * neighboring pixels in the fractions 3/8 to i, j+1,
+ * 3/8 to i+1, j) and 1/4 to (i+1,j+1, truncating to 0
+ * if necessary. Likewise, if it the pixel has a value
+ * below 128, it is binarized to black and the excess above 0
+ * is added to the neighboring pixels, truncating to 255 if necessary.
+ *
+ * This function differs from straight dithering in that it allows
+ * clipping of grayscale to 0 or 255 if the values are
+ * sufficiently close, without distribution of the excess.
+ * This uses default values to specify the range of lower
+ * and upper values near 0 and 255, rsp that are clipped
+ * to black and white without propagating the excess.
+ * Not propagating the excess has the effect of reducing the
+ * snake patterns in parts of the image that are nearly black or white;
+ * however, it also prevents the attempt to reproduce gray for those values.
+ *
+ * The implementation is straightforward. It uses a pair of
+ * line buffers to avoid changing pixs. It is about the same speed
+ * as pixDitherToBinaryLUT(), which uses three LUTs.
+ */
+PIX *
+pixDitherToBinary(PIX *pixs)
+{
+ PROCNAME("pixDitherToBinary");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("must be 8 bpp for dithering", procName, NULL);
+
+ return pixDitherToBinarySpec(pixs, DEFAULT_CLIP_LOWER_1,
+ DEFAULT_CLIP_UPPER_1);
+}
+
+
+/*!
+ * \brief pixDitherToBinarySpec()
+ *
+ * \param[in] pixs
+ * \param[in] lowerclip lower clip distance to black; use 0 for default
+ * \param[in] upperclip upper clip distance to white; use 0 for default
+ * \return pixd dithered binary, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) See comments above in pixDitherToBinary() for details.
+ * (2) The input parameters lowerclip and upperclip specify the range
+ * of lower and upper values (near 0 and 255, rsp) that are
+ * clipped to black and white without propagating the excess.
+ * For that reason, lowerclip and upperclip should be small numbers.
+ * </pre>
+ */
+PIX *
+pixDitherToBinarySpec(PIX *pixs,
+ l_int32 lowerclip,
+ l_int32 upperclip)
+{
+l_int32 w, h, d, wplt, wpld;
+l_uint32 *datat, *datad;
+l_uint32 *bufs1, *bufs2;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixDitherToBinarySpec");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("must be 8 bpp for dithering", procName, NULL);
+ if (lowerclip < 0 || lowerclip > 255)
+ return (PIX *)ERROR_PTR("invalid value for lowerclip", procName, NULL);
+ if (upperclip < 0 || upperclip > 255)
+ return (PIX *)ERROR_PTR("invalid value for upperclip", procName, NULL);
+
+ if ((pixd = pixCreate(w, h, 1)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ /* Remove colormap if it exists */
+ if ((pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE)) == NULL) {
+ pixDestroy(&pixd);
+ return (PIX *)ERROR_PTR("pixt not made", procName, NULL);
+ }
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+
+ /* Two line buffers, 1 for current line and 2 for next line */
+ bufs1 = (l_uint32 *)LEPT_CALLOC(wplt, sizeof(l_uint32));
+ bufs2 = (l_uint32 *)LEPT_CALLOC(wplt, sizeof(l_uint32));
+ if (!bufs1 || !bufs2) {
+ LEPT_FREE(bufs1);
+ LEPT_FREE(bufs2);
+ pixDestroy(&pixd);
+ pixDestroy(&pixt);
+ return (PIX *)ERROR_PTR("bufs1, bufs2 not both made", procName, NULL);
+ }
+
+ ditherToBinaryLow(datad, w, h, wpld, datat, wplt, bufs1, bufs2,
+ lowerclip, upperclip);
+
+ LEPT_FREE(bufs1);
+ LEPT_FREE(bufs2);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*!
+ * \brief ditherToBinaryLow()
+ *
+ * See comments in pixDitherToBinary() in binarize.c
+ */
+static void
+ditherToBinaryLow(l_uint32 *datad,
+ l_int32 w,
+ l_int32 h,
+ l_int32 wpld,
+ l_uint32 *datas,
+ l_int32 wpls,
+ l_uint32 *bufs1,
+ l_uint32 *bufs2,
+ l_int32 lowerclip,
+ l_int32 upperclip)
+{
+l_int32 i;
+l_uint32 *lined;
+
+ /* do all lines except last line */
+ memcpy(bufs2, datas, 4 * wpls); /* prime the buffer */
+ for (i = 0; i < h - 1; i++) {
+ memcpy(bufs1, bufs2, 4 * wpls);
+ memcpy(bufs2, datas + (i + 1) * wpls, 4 * wpls);
+ lined = datad + i * wpld;
+ ditherToBinaryLineLow(lined, w, bufs1, bufs2, lowerclip, upperclip, 0);
+ }
+
+ /* do last line */
+ memcpy(bufs1, bufs2, 4 * wpls);
+ lined = datad + (h - 1) * wpld;
+ ditherToBinaryLineLow(lined, w, bufs1, bufs2, lowerclip, upperclip, 1);
+}
+
+
+/*!
+ * \brief ditherToBinaryLineLow()
+ *
+ * \param[in] lined ptr to beginning of dest line
+ * \param[in] w width of image in pixels
+ * \param[in] bufs1 buffer of current source line
+ * \param[in] bufs2 buffer of next source line
+ * \param[in] lowerclip lower clip distance to black
+ * \param[in] upperclip upper clip distance to white
+ * \param[in] lastlineflag 0 if not last dest line, 1 if last dest line
+ * \return void
+ *
+ * Dispatches FS error diffusion dithering for
+ * a single line of the image. If lastlineflag == 0,
+ * both source buffers are used; otherwise, only bufs1
+ * is used. We use source buffers because the error
+ * is propagated into them, and we don't want to change
+ * the input src image.
+ *
+ * We break dithering out line by line to make it
+ * easier to combine functions like interpolative
+ * scaling and error diffusion dithering, as such a
+ * combination of operations obviates the need to
+ * generate a 2x grayscale image as an intermediary.
+ */
+void
+ditherToBinaryLineLow(l_uint32 *lined,
+ l_int32 w,
+ l_uint32 *bufs1,
+ l_uint32 *bufs2,
+ l_int32 lowerclip,
+ l_int32 upperclip,
+ l_int32 lastlineflag)
+{
+l_int32 j;
+l_int32 oval, eval;
+l_uint8 fval1, fval2, rval, bval, dval;
+
+ if (lastlineflag == 0) {
+ for (j = 0; j < w - 1; j++) {
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (oval > 127) { /* binarize to OFF */
+ if ((eval = 255 - oval) > upperclip) {
+ /* subtract from neighbors */
+ fval1 = (3 * eval) / 8;
+ fval2 = eval / 4;
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ rval = L_MAX(0, rval - fval1);
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ bval = GET_DATA_BYTE(bufs2, j);
+ bval = L_MAX(0, bval - fval1);
+ SET_DATA_BYTE(bufs2, j, bval);
+ dval = GET_DATA_BYTE(bufs2, j + 1);
+ dval = L_MAX(0, dval - fval2);
+ SET_DATA_BYTE(bufs2, j + 1, dval);
+ }
+ } else { /* oval <= 127; binarize to ON */
+ SET_DATA_BIT(lined, j); /* ON pixel */
+ if (oval > lowerclip) {
+ /* add to neighbors */
+ fval1 = (3 * oval) / 8;
+ fval2 = oval / 4;
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ rval = L_MIN(255, rval + fval1);
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ bval = GET_DATA_BYTE(bufs2, j);
+ bval = L_MIN(255, bval + fval1);
+ SET_DATA_BYTE(bufs2, j, bval);
+ dval = GET_DATA_BYTE(bufs2, j + 1);
+ dval = L_MIN(255, dval + fval2);
+ SET_DATA_BYTE(bufs2, j + 1, dval);
+ }
+ }
+ }
+
+ /* do last column: j = w - 1 */
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (oval > 127) { /* binarize to OFF */
+ if ((eval = 255 - oval) > upperclip) {
+ /* subtract from neighbors */
+ fval1 = (3 * eval) / 8;
+ bval = GET_DATA_BYTE(bufs2, j);
+ bval = L_MAX(0, bval - fval1);
+ SET_DATA_BYTE(bufs2, j, bval);
+ }
+ } else { /*oval <= 127; binarize to ON */
+ SET_DATA_BIT(lined, j); /* ON pixel */
+ if (oval > lowerclip) {
+ /* add to neighbors */
+ fval1 = (3 * oval) / 8;
+ bval = GET_DATA_BYTE(bufs2, j);
+ bval = L_MIN(255, bval + fval1);
+ SET_DATA_BYTE(bufs2, j, bval);
+ }
+ }
+ } else { /* lastlineflag == 1 */
+ for (j = 0; j < w - 1; j++) {
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (oval > 127) { /* binarize to OFF */
+ if ((eval = 255 - oval) > upperclip) {
+ /* subtract from neighbors */
+ fval1 = (3 * eval) / 8;
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ rval = L_MAX(0, rval - fval1);
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ }
+ } else { /* oval <= 127; binarize to ON */
+ SET_DATA_BIT(lined, j); /* ON pixel */
+ if (oval > lowerclip) {
+ /* add to neighbors */
+ fval1 = (3 * oval) / 8;
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ rval = L_MIN(255, rval + fval1);
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ }
+ }
+ }
+
+ /* do last pixel: (i, j) = (h - 1, w - 1) */
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (oval < 128)
+ SET_DATA_BIT(lined, j); /* ON pixel */
+ }
+}
+
+
+/*------------------------------------------------------------------*
+ * Simple (pixelwise) binarization with fixed threshold *
+ *------------------------------------------------------------------*/
+/*!
+ * \brief pixThresholdToBinary()
+ *
+ * \param[in] pixs 4 or 8 bpp
+ * \param[in] thresh threshold value
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If the source pixel is less than the threshold value,
+ * the dest will be 1; otherwise, it will be 0.
+ * (2) For example, for 8 bpp src pix, if %thresh == 256, the dest
+ * 1 bpp pix is all ones (fg), and if %thresh == 0, the dest
+ * pix is all zeros (bg).
+ *
+ * </pre>
+ */
+PIX *
+pixThresholdToBinary(PIX *pixs,
+ l_int32 thresh)
+{
+l_int32 d, w, h, wplt, wpld;
+l_uint32 *datat, *datad;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixThresholdToBinary");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 4 && d != 8)
+ return (PIX *)ERROR_PTR("pixs must be 4 or 8 bpp", procName, NULL);
+ if (thresh < 0)
+ return (PIX *)ERROR_PTR("thresh must be non-negative", procName, NULL);
+ if (d == 4 && thresh > 16)
+ return (PIX *)ERROR_PTR("4 bpp thresh not in {0-16}", procName, NULL);
+ if (d == 8 && thresh > 256)
+ return (PIX *)ERROR_PTR("8 bpp thresh not in {0-256}", procName, NULL);
+
+ if ((pixd = pixCreate(w, h, 1)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ /* Remove colormap if it exists. If there is a colormap,
+ * pixt will be 8 bpp regardless of the depth of pixs. */
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+ if (pixGetColormap(pixs) && d == 4) { /* promoted to 8 bpp */
+ d = 8;
+ thresh *= 16;
+ }
+
+ thresholdToBinaryLow(datad, w, h, wpld, datat, d, wplt, thresh);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*!
+ * \brief thresholdToBinaryLow()
+ *
+ * If the source pixel is less than thresh,
+ * the dest will be 1; otherwise, it will be 0
+ */
+static void
+thresholdToBinaryLow(l_uint32 *datad,
+ l_int32 w,
+ l_int32 h,
+ l_int32 wpld,
+ l_uint32 *datas,
+ l_int32 d,
+ l_int32 wpls,
+ l_int32 thresh)
+{
+l_int32 i;
+l_uint32 *lines, *lined;
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ thresholdToBinaryLineLow(lined, w, lines, d, thresh);
+ }
+}
+
+
+/*
+ * thresholdToBinaryLineLow()
+ *
+ */
+void
+thresholdToBinaryLineLow(l_uint32 *lined,
+ l_int32 w,
+ l_uint32 *lines,
+ l_int32 d,
+ l_int32 thresh)
+{
+l_int32 j, k, gval, scount, dcount;
+l_uint32 sword, dword;
+
+ PROCNAME("thresholdToBinaryLineLow");
+
+ switch (d)
+ {
+ case 4:
+ /* Unrolled as 4 source words, 1 dest word */
+ for (j = 0, scount = 0, dcount = 0; j + 31 < w; j += 32) {
+ dword = 0;
+ for (k = 0; k < 4; k++) {
+ sword = lines[scount++];
+ dword <<= 8;
+ gval = (sword >> 28) & 0xf;
+ /* Trick used here and below: if gval < thresh then
+ * gval - thresh < 0, so its high-order bit is 1, and
+ * ((gval - thresh) >> 31) & 1 == 1; likewise, if
+ * gval >= thresh, then ((gval - thresh) >> 31) & 1 == 0
+ * Doing it this way avoids a random (and thus easily
+ * mispredicted) branch on each pixel. */
+ dword |= ((gval - thresh) >> 24) & 128;
+ gval = (sword >> 24) & 0xf;
+ dword |= ((gval - thresh) >> 25) & 64;
+ gval = (sword >> 20) & 0xf;
+ dword |= ((gval - thresh) >> 26) & 32;
+ gval = (sword >> 16) & 0xf;
+ dword |= ((gval - thresh) >> 27) & 16;
+ gval = (sword >> 12) & 0xf;
+ dword |= ((gval - thresh) >> 28) & 8;
+ gval = (sword >> 8) & 0xf;
+ dword |= ((gval - thresh) >> 29) & 4;
+ gval = (sword >> 4) & 0xf;
+ dword |= ((gval - thresh) >> 30) & 2;
+ gval = sword & 0xf;
+ dword |= ((gval - thresh) >> 31) & 1;
+ }
+ lined[dcount++] = dword;
+ }
+
+ if (j < w) {
+ dword = 0;
+ for (; j < w; j++) {
+ if ((j & 7) == 0) {
+ sword = lines[scount++];
+ }
+ gval = (sword >> 28) & 0xf;
+ sword <<= 4;
+ dword |= (((gval - thresh) >> 31) & 1) << (31 - (j & 31));
+ }
+ lined[dcount] = dword;
+ }
+#if DEBUG_UNROLLING
+#define CHECK_BIT(a, b, c) if (GET_DATA_BIT(a, b) != c) { \
+ lept_stderr("Error: mismatch at %d/%d(%d), %d vs %d\n", \
+ j, w, d, GET_DATA_BIT(a, b), c); }
+ for (j = 0; j < w; j++) {
+ gval = GET_DATA_QBIT(lines, j);
+ CHECK_BIT(lined, j, gval < thresh ? 1 : 0);
+ }
+#endif
+ break;
+ case 8:
+ /* Unrolled as 8 source words, 1 dest word */
+ for (j = 0, scount = 0, dcount = 0; j + 31 < w; j += 32) {
+ dword = 0;
+ for (k = 0; k < 8; k++) {
+ sword = lines[scount++];
+ dword <<= 4;
+ gval = (sword >> 24) & 0xff;
+ dword |= ((gval - thresh) >> 28) & 8;
+ gval = (sword >> 16) & 0xff;
+ dword |= ((gval - thresh) >> 29) & 4;
+ gval = (sword >> 8) & 0xff;
+ dword |= ((gval - thresh) >> 30) & 2;
+ gval = sword & 0xff;
+ dword |= ((gval - thresh) >> 31) & 1;
+ }
+ lined[dcount++] = dword;
+ }
+
+ if (j < w) {
+ dword = 0;
+ for (; j < w; j++) {
+ if ((j & 3) == 0) {
+ sword = lines[scount++];
+ }
+ gval = (sword >> 24) & 0xff;
+ sword <<= 8;
+ dword |= (l_uint64)(((gval - thresh) >> 31) & 1)
+ << (31 - (j & 31));
+ }
+ lined[dcount] = dword;
+ }
+#if DEBUG_UNROLLING
+ for (j = 0; j < w; j++) {
+ gval = GET_DATA_BYTE(lines, j);
+ CHECK_BIT(lined, j, gval < thresh ? 1 : 0);
+ }
+#undef CHECK_BIT
+#endif
+ break;
+ default:
+ L_ERROR("src depth not 4 or 8 bpp\n", procName);
+ break;
+ }
+}
+
+
+/*------------------------------------------------------------------*
+ * Binarization with variable threshold *
+ *------------------------------------------------------------------*/
+/*!
+ * \brief pixVarThresholdToBinary()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] pixg 8 bpp; contains threshold values for each pixel
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If the pixel in pixs is less than the corresponding pixel
+ * in pixg, the dest will be 1; otherwise it will be 0.
+ * </pre>
+ */
+PIX *
+pixVarThresholdToBinary(PIX *pixs,
+ PIX *pixg)
+{
+l_int32 i, j, vals, valg, w, h, d, wpls, wplg, wpld;
+l_uint32 *datas, *datag, *datad, *lines, *lineg, *lined;
+PIX *pixd;
+
+ PROCNAME("pixVarThresholdToBinary");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (!pixg)
+ return (PIX *)ERROR_PTR("pixg not defined", procName, NULL);
+ if (!pixSizesEqual(pixs, pixg))
+ return (PIX *)ERROR_PTR("pix sizes not equal", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("pixs must be 8 bpp", procName, NULL);
+
+ pixd = pixCreate(w, h, 1);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datag = pixGetData(pixg);
+ wplg = pixGetWpl(pixg);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lineg = datag + i * wplg;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ vals = GET_DATA_BYTE(lines, j);
+ valg = GET_DATA_BYTE(lineg, j);
+ if (vals < valg)
+ SET_DATA_BIT(lined, j);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*------------------------------------------------------------------*
+ * Binarization by adaptive mapping *
+ *------------------------------------------------------------------*/
+/*!
+ * \brief pixAdaptThresholdToBinary()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] pixm [optional] 1 bpp image mask; can be null
+ * \param[in] gamma gamma correction; must be > 0.0; typically ~1.0
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a simple convenience function for doing adaptive
+ * thresholding on a grayscale image with variable background.
+ * It uses default parameters appropriate for typical text images.
+ * (2) %pixm is a 1 bpp mask over "image" regions, which are not
+ * expected to have a white background. The mask inhibits
+ * background finding under the fg pixels of the mask. For
+ * images with both text and image, the image regions would
+ * be binarized (or quantized) by a different set of operations.
+ * (3) As %gamma is increased, the foreground pixels are reduced.
+ * (4) Under the covers: The default background value for normalization
+ * is 200, so we choose 170 for 'maxval' in pixGammaTRC. Likewise,
+ * the default foreground threshold for normalization is 60,
+ * so we choose 50 for 'minval' in pixGammaTRC. Because
+ * 170 was mapped to 255, choosing 200 for the threshold is
+ * quite safe for avoiding speckle noise from the background.
+ * </pre>
+ */
+PIX *
+pixAdaptThresholdToBinary(PIX *pixs,
+ PIX *pixm,
+ l_float32 gamma)
+{
+ PROCNAME("pixAdaptThresholdToBinary");
+
+ if (!pixs || pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
+
+ return pixAdaptThresholdToBinaryGen(pixs, pixm, gamma, 50, 170, 200);
+}
+
+
+/*!
+ * \brief pixAdaptThresholdToBinaryGen()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] pixm [optional] 1 bpp image mask; can be null
+ * \param[in] gamma gamma correction; must be > 0.0; typically ~1.0
+ * \param[in] blackval dark value to set to black (0)
+ * \param[in] whiteval light value to set to white (255)
+ * \param[in] thresh final threshold for binarization
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a convenience function for doing adaptive thresholding
+ * on a grayscale image with variable background. Also see notes
+ * in pixAdaptThresholdToBinary().
+ * (2) Reducing %gamma increases the foreground (text) pixels.
+ * Use a low value (e.g., 0.5) for images with light text.
+ * (3) For normal images, see default args in pixAdaptThresholdToBinary().
+ * For images with very light text, these values are appropriate:
+ * gamma ~0.5
+ * blackval ~70
+ * whiteval ~190
+ * thresh ~200
+ * </pre>
+ */
+PIX *
+pixAdaptThresholdToBinaryGen(PIX *pixs,
+ PIX *pixm,
+ l_float32 gamma,
+ l_int32 blackval,
+ l_int32 whiteval,
+ l_int32 thresh)
+{
+PIX *pix1, *pixd;
+
+ PROCNAME("pixAdaptThresholdToBinaryGen");
+
+ if (!pixs || pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
+
+ if ((pix1 = pixBackgroundNormSimple(pixs, pixm, NULL)) == NULL)
+ return (PIX *)ERROR_PTR("pix1 not made", procName, NULL);
+ pixGammaTRC(pix1, pix1, gamma, blackval, whiteval);
+ pixd = pixThresholdToBinary(pix1, thresh);
+ pixDestroy(&pix1);
+ return pixd;
+}
+
+
+/*--------------------------------------------------------------------*
+ * Generate a binary mask from pixels of particular value(s) *
+ *--------------------------------------------------------------------*/
+/*!
+ * \brief pixGenerateMaskByValue()
+ *
+ * \param[in] pixs 2, 4 or 8 bpp, or colormapped
+ * \param[in] val of pixels for which we set 1 in dest
+ * \param[in] usecmap 1 to retain cmap values; 0 to convert to gray
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) %val is the pixel value that we are selecting. It can be
+ * either a gray value or a colormap index.
+ * (2) If pixs is colormapped, %usecmap determines if the colormap
+ * index values are used, or if the colormap is removed to gray and
+ * the gray values are used. For the latter, it generates
+ * an approximate grayscale value for each pixel, and then looks
+ * for gray pixels with the value %val.
+ * </pre>
+ */
+PIX *
+pixGenerateMaskByValue(PIX *pixs,
+ l_int32 val,
+ l_int32 usecmap)
+{
+l_int32 i, j, w, h, d, wplg, wpld;
+l_uint32 *datag, *datad, *lineg, *lined;
+PIX *pixg, *pixd;
+
+ PROCNAME("pixGenerateMaskByValue");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 2 && d != 4 && d != 8)
+ return (PIX *)ERROR_PTR("not 2, 4 or 8 bpp", procName, NULL);
+
+ if (!usecmap && pixGetColormap(pixs))
+ pixg = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixg = pixClone(pixs);
+ pixGetDimensions(pixg, &w, &h, &d);
+ if (d == 8 && (val < 0 || val > 255)) {
+ pixDestroy(&pixg);
+ return (PIX *)ERROR_PTR("val out of 8 bpp range", procName, NULL);
+ }
+ if (d == 4 && (val < 0 || val > 15)) {
+ pixDestroy(&pixg);
+ return (PIX *)ERROR_PTR("val out of 4 bpp range", procName, NULL);
+ }
+ if (d == 2 && (val < 0 || val > 3)) {
+ pixDestroy(&pixg);
+ return (PIX *)ERROR_PTR("val out of 2 bpp range", procName, NULL);
+ }
+
+ pixd = pixCreate(w, h, 1);
+ pixCopyResolution(pixd, pixg);
+ pixCopyInputFormat(pixd, pixs);
+ datag = pixGetData(pixg);
+ wplg = pixGetWpl(pixg);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lineg = datag + i * wplg;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ if (d == 8) {
+ if (GET_DATA_BYTE(lineg, j) == val)
+ SET_DATA_BIT(lined, j);
+ } else if (d == 4) {
+ if (GET_DATA_QBIT(lineg, j) == val)
+ SET_DATA_BIT(lined, j);
+ } else { /* d == 2 */
+ if (GET_DATA_DIBIT(lineg, j) == val)
+ SET_DATA_BIT(lined, j);
+ }
+ }
+ }
+
+ pixDestroy(&pixg);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixGenerateMaskByBand()
+ *
+ * \param[in] pixs 2, 4 or 8 bpp, or colormapped
+ * \param[in] lower, upper two pixel values from which a range, either
+ * between (inband) or outside of (!inband),
+ * determines which pixels in pixs cause us to
+ * set a 1 in the dest mask
+ * \param[in] inband 1 for finding pixels in [lower, upper];
+ * 0 for finding pixels in
+ * [0, lower) union (upper, 255]
+ * \param[in] usecmap 1 to retain cmap values; 0 to convert to gray
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Generates a 1 bpp mask pixd, the same size as pixs, where
+ * the fg pixels in the mask are those either within the specified
+ * band (for inband == 1) or outside the specified band
+ * (for inband == 0).
+ * (2) If pixs is colormapped, %usecmap determines if the colormap
+ * values are used, or if the colormap is removed to gray and
+ * the gray values are used. For the latter, it generates
+ * an approximate grayscale value for each pixel, and then looks
+ * for gray pixels with the value %val.
+ * </pre>
+ */
+PIX *
+pixGenerateMaskByBand(PIX *pixs,
+ l_int32 lower,
+ l_int32 upper,
+ l_int32 inband,
+ l_int32 usecmap)
+{
+l_int32 i, j, w, h, d, wplg, wpld, val;
+l_uint32 *datag, *datad, *lineg, *lined;
+PIX *pixg, *pixd;
+
+ PROCNAME("pixGenerateMaskByBand");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 2 && d != 4 && d != 8)
+ return (PIX *)ERROR_PTR("not 2, 4 or 8 bpp", procName, NULL);
+ if (lower < 0 || lower > upper)
+ return (PIX *)ERROR_PTR("lower < 0 or lower > upper!", procName, NULL);
+
+ if (!usecmap && pixGetColormap(pixs))
+ pixg = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixg = pixClone(pixs);
+ pixGetDimensions(pixg, &w, &h, &d);
+ if (d == 8 && upper > 255) {
+ pixDestroy(&pixg);
+ return (PIX *)ERROR_PTR("d == 8 and upper > 255", procName, NULL);
+ }
+ if (d == 4 && upper > 15) {
+ pixDestroy(&pixg);
+ return (PIX *)ERROR_PTR("d == 4 and upper > 15", procName, NULL);
+ }
+ if (d == 2 && upper > 3) {
+ pixDestroy(&pixg);
+ return (PIX *)ERROR_PTR("d == 2 and upper > 3", procName, NULL);
+ }
+
+ pixd = pixCreate(w, h, 1);
+ pixCopyResolution(pixd, pixg);
+ pixCopyInputFormat(pixd, pixs);
+ datag = pixGetData(pixg);
+ wplg = pixGetWpl(pixg);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lineg = datag + i * wplg;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ if (d == 8)
+ val = GET_DATA_BYTE(lineg, j);
+ else if (d == 4)
+ val = GET_DATA_QBIT(lineg, j);
+ else /* d == 2 */
+ val = GET_DATA_DIBIT(lineg, j);
+ if (inband) {
+ if (val >= lower && val <= upper)
+ SET_DATA_BIT(lined, j);
+ } else { /* out of band */
+ if (val < lower || val > upper)
+ SET_DATA_BIT(lined, j);
+ }
+ }
+ }
+
+ pixDestroy(&pixg);
+ return pixd;
+}
+
+
+/*------------------------------------------------------------------*
+ * Thresholding to 2 bpp by dithering *
+ *------------------------------------------------------------------*/
+/*!
+ * \brief pixDitherTo2bpp()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] cmapflag 1 to generate a colormap
+ * \return pixd dithered 2 bpp, or NULL on error
+ *
+ * An analog of the Floyd-Steinberg error diffusion dithering
+ * algorithm is used to "dibitize" an 8 bpp grayscale image
+ * to 2 bpp, using equally spaced gray values of 0, 85, 170, and 255,
+ * which are served by thresholds of 43, 128 and 213.
+ * If cmapflag == 1, the colormap values are set to 0, 85, 170 and 255.
+ * If a pixel has a value between 0 and 42, it is dibitized
+ * to 0, and the excess above 0 is added to the
+ * three neighboring pixels, in the fractions 3/8 to i, j+1,
+ * 3/8 to i+1, j) and 1/4 to (i+1, j+1, truncating to 255 if
+ * necessary. If a pixel has a value between 43 and 127, it is
+ * dibitized to 1, and the excess above 85 is added to the three
+ * neighboring pixels as before. If the value is below 85, the
+ * excess is subtracted. With a value between 128
+ * and 212, it is dibitized to 2, with the excess on either side
+ * of 170 distributed as before. Finally, with a value between
+ * 213 and 255, it is dibitized to 3, with the excess below 255
+ * subtracted from the neighbors. We always truncate to 0 or 255.
+ * The details can be seen in the lookup table generation.
+ *
+ * This function differs from straight dithering in that it allows
+ * clipping of grayscale to 0 or 255 if the values are
+ * sufficiently close, without distribution of the excess.
+ * This uses default values from pix.h to specify the range of lower
+ * and upper values near 0 and 255, rsp that are clipped to black
+ * and white without propagating the excess.
+ * Not propagating the excess has the effect of reducing the snake
+ * patterns in parts of the image that are nearly black or white;
+ * however, it also prevents any attempt to reproduce gray for those values.
+ *
+ * The implementation uses 3 lookup tables for simplicity, and
+ * a pair of line buffers to avoid modifying pixs.
+ */
+PIX *
+pixDitherTo2bpp(PIX *pixs,
+ l_int32 cmapflag)
+{
+ PROCNAME("pixDitherTo2bpp");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("must be 8 bpp for dithering", procName, NULL);
+
+ return pixDitherTo2bppSpec(pixs, DEFAULT_CLIP_LOWER_2,
+ DEFAULT_CLIP_UPPER_2, cmapflag);
+}
+
+
+/*!
+ * \brief pixDitherTo2bppSpec()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] lowerclip lower clip distance to black; use 0 for default
+ * \param[in] upperclip upper clip distance to white; use 0 for default
+ * \param[in] cmapflag 1 to generate a colormap
+ * \return pixd dithered 2 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) See comments above in pixDitherTo2bpp() for details.
+ * (2) The input parameters lowerclip and upperclip specify the range
+ * of lower and upper values (near 0 and 255, rsp) that are
+ * clipped to black and white without propagating the excess.
+ * For that reason, lowerclip and upperclip should be small numbers.
+ * </pre>
+ */
+PIX *
+pixDitherTo2bppSpec(PIX *pixs,
+ l_int32 lowerclip,
+ l_int32 upperclip,
+ l_int32 cmapflag)
+{
+l_int32 w, h, d, wplt, wpld;
+l_int32 *tabval, *tab38, *tab14;
+l_uint32 *datat, *datad;
+l_uint32 *bufs1, *bufs2;
+PIX *pixt, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixDitherTo2bppSpec");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("must be 8 bpp for dithering", procName, NULL);
+ if (lowerclip < 0 || lowerclip > 255)
+ return (PIX *)ERROR_PTR("invalid value for lowerclip", procName, NULL);
+ if (upperclip < 0 || upperclip > 255)
+ return (PIX *)ERROR_PTR("invalid value for upperclip", procName, NULL);
+
+ if ((pixd = pixCreate(w, h, 2)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ /* If there is a colormap, remove it */
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+
+ /* Two line buffers, 1 for current line and 2 for next line */
+ bufs1 = (l_uint32 *)LEPT_CALLOC(wplt, sizeof(l_uint32));
+ bufs2 = (l_uint32 *)LEPT_CALLOC(wplt, sizeof(l_uint32));
+ if (!bufs1 || !bufs2) {
+ LEPT_FREE(bufs1);
+ LEPT_FREE(bufs2);
+ pixDestroy(&pixd);
+ pixDestroy(&pixt);
+ return (PIX *)ERROR_PTR("bufs1, bufs2 not both made", procName, NULL);
+ }
+
+ /* 3 lookup tables: 2-bit value, (3/8)excess, and (1/4)excess */
+ make8To2DitherTables(&tabval, &tab38, &tab14, lowerclip, upperclip);
+
+ ditherTo2bppLow(datad, w, h, wpld, datat, wplt, bufs1, bufs2,
+ tabval, tab38, tab14);
+
+ if (cmapflag) {
+ cmap = pixcmapCreateLinear(2, 4);
+ pixSetColormap(pixd, cmap);
+ }
+
+ LEPT_FREE(bufs1);
+ LEPT_FREE(bufs2);
+ LEPT_FREE(tabval);
+ LEPT_FREE(tab38);
+ LEPT_FREE(tab14);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*!
+ * \brief ditherTo2bppLow()
+ *
+ * Low-level function for doing Floyd-Steinberg error diffusion
+ * dithering from 8 bpp (datas) to 2 bpp (datad). Two source
+ * line buffers, bufs1 and bufs2, are provided, along with three
+ * 256-entry lookup tables: tabval gives the output pixel value,
+ * tab38 gives the extra (plus or minus) transferred to the pixels
+ * directly to the left and below, and tab14 gives the extra
+ * transferred to the diagonal below. The choice of 3/8 and 1/4
+ * is traditional but arbitrary when you use a lookup table; the
+ * only constraint is that the sum is 1. See other comments
+ * below and in grayquant.c.
+ */
+static void
+ditherTo2bppLow(l_uint32 *datad,
+ l_int32 w,
+ l_int32 h,
+ l_int32 wpld,
+ l_uint32 *datas,
+ l_int32 wpls,
+ l_uint32 *bufs1,
+ l_uint32 *bufs2,
+ l_int32 *tabval,
+ l_int32 *tab38,
+ l_int32 *tab14)
+{
+l_int32 i;
+l_uint32 *lined;
+
+ /* do all lines except last line */
+ memcpy(bufs2, datas, 4 * wpls); /* prime the buffer */
+ for (i = 0; i < h - 1; i++) {
+ memcpy(bufs1, bufs2, 4 * wpls);
+ memcpy(bufs2, datas + (i + 1) * wpls, 4 * wpls);
+ lined = datad + i * wpld;
+ ditherTo2bppLineLow(lined, w, bufs1, bufs2, tabval, tab38, tab14, 0);
+ }
+
+ /* do last line */
+ memcpy(bufs1, bufs2, 4 * wpls);
+ lined = datad + (h - 1) * wpld;
+ ditherTo2bppLineLow(lined, w, bufs1, bufs2, tabval, tab38, tab14, 1);
+}
+
+
+/*!
+ * \brief ditherTo2bppLineLow()
+ *
+ * \param[in] lined ptr to beginning of dest line
+ * \param[in] w width of image in pixels
+ * \param[in] bufs1 buffer of current source line
+ * \param[in] bufs2 buffer of next source line
+ * \param[in] tabval value to assign for current pixel
+ * \param[in] tab38 excess value to give to neighboring 3/8 pixels
+ * \param[in] tab14 excess value to give to neighboring 1/4 pixel
+ * \param[in] lastlineflag 0 if not last dest line, 1 if last dest line
+ * \return void
+ *
+ * Dispatches error diffusion dithering for
+ * a single line of the image. If lastlineflag == 0,
+ * both source buffers are used; otherwise, only bufs1
+ * is used. We use source buffers because the error
+ * is propagated into them, and we don't want to change
+ * the input src image.
+ *
+ * We break dithering out line by line to make it
+ * easier to combine functions like interpolative
+ * scaling and error diffusion dithering, as such a
+ * combination of operations obviates the need to
+ * generate a 2x grayscale image as an intermediary.
+ */
+static void
+ditherTo2bppLineLow(l_uint32 *lined,
+ l_int32 w,
+ l_uint32 *bufs1,
+ l_uint32 *bufs2,
+ l_int32 *tabval,
+ l_int32 *tab38,
+ l_int32 *tab14,
+ l_int32 lastlineflag)
+{
+l_int32 j;
+l_int32 oval, tab38val, tab14val;
+l_uint8 rval, bval, dval;
+
+ if (lastlineflag == 0) {
+ for (j = 0; j < w - 1; j++) {
+ oval = GET_DATA_BYTE(bufs1, j);
+ SET_DATA_DIBIT(lined, j, tabval[oval]);
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ bval = GET_DATA_BYTE(bufs2, j);
+ dval = GET_DATA_BYTE(bufs2, j + 1);
+ tab38val = tab38[oval];
+ tab14val = tab14[oval];
+ if (tab38val < 0) {
+ rval = L_MAX(0, rval + tab38val);
+ bval = L_MAX(0, bval + tab38val);
+ dval = L_MAX(0, dval + tab14val);
+ } else {
+ rval = L_MIN(255, rval + tab38val);
+ bval = L_MIN(255, bval + tab38val);
+ dval = L_MIN(255, dval + tab14val);
+ }
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ SET_DATA_BYTE(bufs2, j, bval);
+ SET_DATA_BYTE(bufs2, j + 1, dval);
+ }
+
+ /* do last column: j = w - 1 */
+ oval = GET_DATA_BYTE(bufs1, j);
+ SET_DATA_DIBIT(lined, j, tabval[oval]);
+ bval = GET_DATA_BYTE(bufs2, j);
+ tab38val = tab38[oval];
+ if (tab38val < 0)
+ bval = L_MAX(0, bval + tab38val);
+ else
+ bval = L_MIN(255, bval + tab38val);
+ SET_DATA_BYTE(bufs2, j, bval);
+ } else { /* lastlineflag == 1 */
+ for (j = 0; j < w - 1; j++) {
+ oval = GET_DATA_BYTE(bufs1, j);
+ SET_DATA_DIBIT(lined, j, tabval[oval]);
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ tab38val = tab38[oval];
+ if (tab38val < 0)
+ rval = L_MAX(0, rval + tab38val);
+ else
+ rval = L_MIN(255, rval + tab38val);
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ }
+
+ /* do last pixel: (i, j) = (h - 1, w - 1) */
+ oval = GET_DATA_BYTE(bufs1, j);
+ SET_DATA_DIBIT(lined, j, tabval[oval]);
+ }
+}
+
+
+/*!
+ * \brief make8To2DitherTables()
+ *
+ * \param[out] ptabval value assigned to output pixel; 0, 1, 2 or 3
+ * \param[out] ptab38 amount propagated to pixels left and below
+ * \param[out] ptab14 amount propagated to pixel to left and down
+ * \param[in] cliptoblack values near 0 where the excess is not propagated
+ * \param[in] cliptowhite values near 255 where the deficit is not propagated
+ *
+ * \return 0 if OK, 1 on error
+ */
+static l_int32
+make8To2DitherTables(l_int32 **ptabval,
+ l_int32 **ptab38,
+ l_int32 **ptab14,
+ l_int32 cliptoblack,
+ l_int32 cliptowhite)
+{
+l_int32 i;
+l_int32 *tabval, *tab38, *tab14;
+
+ /* 3 lookup tables: 2-bit value, (3/8)excess, and (1/4)excess */
+ tabval = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ tab38 = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ tab14 = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ *ptabval = tabval;
+ *ptab38 = tab38;
+ *ptab14 = tab14;
+
+ for (i = 0; i < 256; i++) {
+ if (i <= cliptoblack) {
+ tabval[i] = 0;
+ tab38[i] = 0;
+ tab14[i] = 0;
+ } else if (i < 43) {
+ tabval[i] = 0;
+ tab38[i] = (3 * i + 4) / 8;
+ tab14[i] = (i + 2) / 4;
+ } else if (i < 85) {
+ tabval[i] = 1;
+ tab38[i] = (3 * (i - 85) - 4) / 8;
+ tab14[i] = ((i - 85) - 2) / 4;
+ } else if (i < 128) {
+ tabval[i] = 1;
+ tab38[i] = (3 * (i - 85) + 4) / 8;
+ tab14[i] = ((i - 85) + 2) / 4;
+ } else if (i < 170) {
+ tabval[i] = 2;
+ tab38[i] = (3 * (i - 170) - 4) / 8;
+ tab14[i] = ((i - 170) - 2) / 4;
+ } else if (i < 213) {
+ tabval[i] = 2;
+ tab38[i] = (3 * (i - 170) + 4) / 8;
+ tab14[i] = ((i - 170) + 2) / 4;
+ } else if (i < 255 - cliptowhite) {
+ tabval[i] = 3;
+ tab38[i] = (3 * (i - 255) - 4) / 8;
+ tab14[i] = ((i - 255) - 2) / 4;
+ } else { /* i >= 255 - cliptowhite */
+ tabval[i] = 3;
+ tab38[i] = 0;
+ tab14[i] = 0;
+ }
+ }
+
+ return 0;
+}
+
+
+/*--------------------------------------------------------------------*
+ * Simple (pixelwise) thresholding to 2 bpp with optional colormap *
+ *--------------------------------------------------------------------*/
+/*!
+ * \brief pixThresholdTo2bpp()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] nlevels equally spaced; must be between 2 and 4
+ * \param[in] cmapflag 1 to build colormap; 0 otherwise
+ * \return pixd 2 bpp, optionally with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Valid values for nlevels is the set {2, 3, 4}.
+ * (2) Any colormap on the input pixs is removed to 8 bpp grayscale.
+ * (3) This function is typically invoked with cmapflag == 1.
+ * In the situation where no colormap is desired, nlevels is
+ * ignored and pixs is thresholded to 4 levels.
+ * (4) The target output colors are equally spaced, with the
+ * darkest at 0 and the lightest at 255. The thresholds are
+ * chosen halfway between adjacent output values. A table
+ * is built that specifies the mapping from src to dest.
+ * (5) If cmapflag == 1, a colormap of size 'nlevels' is made,
+ * and the pixel values in pixs are replaced by their
+ * appropriate color indices. The number of holdouts,
+ * 4 - nlevels, will be between 0 and 2.
+ * (6) If you don't want the thresholding to be equally spaced,
+ * either first transform the 8 bpp src using pixGammaTRC().
+ * or, if cmapflag == 1, after calling this function you can use
+ * pixcmapResetColor() to change any individual colors.
+ * (7) If a colormap is generated, it will specify (to display
+ * programs) exactly how each level is to be represented in RGB
+ * space. When representing text, 3 levels is far better than
+ * 2 because of the antialiasing of the single gray level,
+ * and 4 levels (black, white and 2 gray levels) is getting
+ * close to the perceptual quality of a (nearly continuous)
+ * grayscale image. With 2 bpp, you can set up a colormap
+ * and allocate from 2 to 4 levels to represent antialiased text.
+ * Any left over colormap entries can be used for coloring regions.
+ * For the same number of levels, the file size of a 2 bpp image
+ * is about 10% smaller than that of a 4 bpp result for the same
+ * number of levels. For both 2 bpp and 4 bpp, using 4 levels you
+ * get compression far better than that of jpeg, because the
+ * quantization to 4 levels will remove the jpeg ringing in the
+ * background near character edges.
+ * </pre>
+ */
+PIX *
+pixThresholdTo2bpp(PIX *pixs,
+ l_int32 nlevels,
+ l_int32 cmapflag)
+{
+l_int32 *qtab;
+l_int32 w, h, d, wplt, wpld;
+l_uint32 *datat, *datad;
+PIX *pixt, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixThresholdTo2bpp");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (nlevels < 2 || nlevels > 4)
+ return (PIX *)ERROR_PTR("nlevels not in {2, 3, 4}", procName, NULL);
+
+ if ((pixd = pixCreate(w, h, 2)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ if (cmapflag) { /* hold out (4 - nlevels) cmap entries */
+ cmap = pixcmapCreateLinear(2, nlevels);
+ pixSetColormap(pixd, cmap);
+ }
+
+ /* If there is a colormap in the src, remove it */
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+
+ /* Make the appropriate table */
+ if (cmapflag)
+ qtab = makeGrayQuantIndexTable(nlevels);
+ else
+ qtab = makeGrayQuantTargetTable(4, 2);
+
+ thresholdTo2bppLow(datad, h, wpld, datat, wplt, qtab);
+
+ LEPT_FREE(qtab);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*!
+ * \brief thresholdTo2bppLow()
+ *
+ * Low-level function for thresholding from 8 bpp (datas) to
+ * 2 bpp (datad), using thresholds implicitly defined through %tab,
+ * a 256-entry lookup table that gives a 2-bit output value
+ * for each possible input.
+ *
+ * For each line, unroll the loop so that for each 32 bit src word,
+ * representing four consecutive 8-bit pixels, we compose one byte
+ * of output consisiting of four 2-bit pixels.
+ */
+static void
+thresholdTo2bppLow(l_uint32 *datad,
+ l_int32 h,
+ l_int32 wpld,
+ l_uint32 *datas,
+ l_int32 wpls,
+ l_int32 *tab)
+{
+l_uint8 sval1, sval2, sval3, sval4, dval;
+l_int32 i, j, k;
+l_uint32 *lines, *lined;
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < wpls; j++) {
+ k = 4 * j;
+ sval1 = GET_DATA_BYTE(lines, k);
+ sval2 = GET_DATA_BYTE(lines, k + 1);
+ sval3 = GET_DATA_BYTE(lines, k + 2);
+ sval4 = GET_DATA_BYTE(lines, k + 3);
+ dval = (tab[sval1] << 6) | (tab[sval2] << 4) |
+ (tab[sval3] << 2) | tab[sval4];
+ SET_DATA_BYTE(lined, j, dval);
+ }
+ }
+}
+
+
+/*----------------------------------------------------------------------*
+ * Simple (pixelwise) thresholding to 4 bpp *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief pixThresholdTo4bpp()
+ *
+ * \param[in] pixs 8 bpp, can have colormap
+ * \param[in] nlevels equally spaced; must be between 2 and 16
+ * \param[in] cmapflag 1 to build colormap; 0 otherwise
+ * \return pixd 4 bpp, optionally with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Valid values for nlevels is the set {2, ... 16}.
+ * (2) Any colormap on the input pixs is removed to 8 bpp grayscale.
+ * (3) This function is typically invoked with cmapflag == 1.
+ * In the situation where no colormap is desired, nlevels is
+ * ignored and pixs is thresholded to 16 levels.
+ * (4) The target output colors are equally spaced, with the
+ * darkest at 0 and the lightest at 255. The thresholds are
+ * chosen halfway between adjacent output values. A table
+ * is built that specifies the mapping from src to dest.
+ * (5) If cmapflag == 1, a colormap of size 'nlevels' is made,
+ * and the pixel values in pixs are replaced by their
+ * appropriate color indices. The number of holdouts,
+ * 16 - nlevels, will be between 0 and 14.
+ * (6) If you don't want the thresholding to be equally spaced,
+ * either first transform the 8 bpp src using pixGammaTRC().
+ * or, if cmapflag == 1, after calling this function you can use
+ * pixcmapResetColor() to change any individual colors.
+ * (7) If a colormap is generated, it will specify, to display
+ * programs, exactly how each level is to be represented in RGB
+ * space. When representing text, 3 levels is far better than
+ * 2 because of the antialiasing of the single gray level,
+ * and 4 levels (black, white and 2 gray levels) is getting
+ * close to the perceptual quality of a (nearly continuous)
+ * grayscale image. Therefore, with 4 bpp, you can set up a
+ * colormap, allocate a relatively small fraction of the 16
+ * possible values to represent antialiased text, and use the
+ * other colormap entries for other things, such as coloring
+ * text or background. Two other reasons for using a small number
+ * of gray values for antialiased text are (1) PNG compression
+ * gets worse as the number of levels that are used is increased,
+ * and (2) using a small number of levels will filter out most of
+ * the jpeg ringing that is typically introduced near sharp edges
+ * of text. This filtering is partly responsible for the improved
+ * compression.
+ * </pre>
+ */
+PIX *
+pixThresholdTo4bpp(PIX *pixs,
+ l_int32 nlevels,
+ l_int32 cmapflag)
+{
+l_int32 *qtab;
+l_int32 w, h, d, wplt, wpld;
+l_uint32 *datat, *datad;
+PIX *pixt, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixThresholdTo4bpp");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (nlevels < 2 || nlevels > 16)
+ return (PIX *)ERROR_PTR("nlevels not in [2,...,16]", procName, NULL);
+
+ if ((pixd = pixCreate(w, h, 4)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ if (cmapflag) { /* hold out (16 - nlevels) cmap entries */
+ cmap = pixcmapCreateLinear(4, nlevels);
+ pixSetColormap(pixd, cmap);
+ }
+
+ /* If there is a colormap in the src, remove it */
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+
+ /* Make the appropriate table */
+ if (cmapflag)
+ qtab = makeGrayQuantIndexTable(nlevels);
+ else
+ qtab = makeGrayQuantTargetTable(16, 4);
+
+ thresholdTo4bppLow(datad, h, wpld, datat, wplt, qtab);
+
+ LEPT_FREE(qtab);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*!
+ * \brief thresholdTo4bppLow()
+ *
+ * Low-level function for thresholding from 8 bpp (datas) to
+ * 4 bpp (datad), using thresholds implicitly defined through %tab,
+ * a 256-entry lookup table that gives a 4-bit output value
+ * for each possible input.
+ *
+ * For each line, unroll the loop so that for each 32 bit src word,
+ * representing four consecutive 8-bit pixels, we compose two bytes
+ * of output consisiting of four 4-bit pixels.
+ */
+static void
+thresholdTo4bppLow(l_uint32 *datad,
+ l_int32 h,
+ l_int32 wpld,
+ l_uint32 *datas,
+ l_int32 wpls,
+ l_int32 *tab)
+{
+l_uint8 sval1, sval2, sval3, sval4;
+l_uint16 dval;
+l_int32 i, j, k;
+l_uint32 *lines, *lined;
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < wpls; j++) {
+ k = 4 * j;
+ sval1 = GET_DATA_BYTE(lines, k);
+ sval2 = GET_DATA_BYTE(lines, k + 1);
+ sval3 = GET_DATA_BYTE(lines, k + 2);
+ sval4 = GET_DATA_BYTE(lines, k + 3);
+ dval = (tab[sval1] << 12) | (tab[sval2] << 8) |
+ (tab[sval3] << 4) | tab[sval4];
+ SET_DATA_TWO_BYTES(lined, j, dval);
+ }
+ }
+}
+
+
+/*----------------------------------------------------------------------*
+ * Simple (pixelwise) thresholding on 8 bpp with optional colormap *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief pixThresholdOn8bpp()
+ *
+ * \param[in] pixs 8 bpp, can have colormap
+ * \param[in] nlevels equally spaced; must be between 2 and 256
+ * \param[in] cmapflag 1 to build colormap; 0 otherwise
+ * \return pixd 8 bpp, optionally with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Valid values for nlevels is the set {2,...,256}.
+ * (2) Any colormap on the input pixs is removed to 8 bpp grayscale.
+ * (3) If cmapflag == 1, a colormap of size 'nlevels' is made,
+ * and the pixel values in pixs are replaced by their
+ * appropriate color indices. Otherwise, the pixel values
+ * are the actual thresholded (i.e., quantized) grayscale values.
+ * (4) If you don't want the thresholding to be equally spaced,
+ * first transform the input 8 bpp src using pixGammaTRC().
+ * </pre>
+ */
+PIX *
+pixThresholdOn8bpp(PIX *pixs,
+ l_int32 nlevels,
+ l_int32 cmapflag)
+{
+l_int32 *qtab; /* quantization table */
+l_int32 i, j, w, h, wpld, val, newval;
+l_uint32 *datad, *lined;
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixThresholdOn8bpp");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (nlevels < 2 || nlevels > 256)
+ return (PIX *)ERROR_PTR("nlevels not in [2,...,256]", procName, NULL);
+
+ /* Get a new pixd; if there is a colormap in the src, remove it */
+ if (pixGetColormap(pixs))
+ pixd = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixd = pixCopy(NULL, pixs);
+
+ if (cmapflag) { /* hold out (256 - nlevels) cmap entries */
+ cmap = pixcmapCreateLinear(8, nlevels);
+ pixSetColormap(pixd, cmap);
+ }
+
+ if (cmapflag)
+ qtab = makeGrayQuantIndexTable(nlevels);
+ else
+ qtab = makeGrayQuantTargetTable(nlevels, 8);
+
+ pixGetDimensions(pixd, &w, &h, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(lined, j);
+ newval = qtab[val];
+ SET_DATA_BYTE(lined, j, newval);
+ }
+ }
+
+ LEPT_FREE(qtab);
+ return pixd;
+}
+
+
+/*----------------------------------------------------------------------*
+ * Arbitrary (pixelwise) thresholding from 8 bpp to 2, 4 or 8 bpp *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief pixThresholdGrayArb()
+ *
+ * \param[in] pixs 8 bpp grayscale; can have colormap
+ * \param[in] edgevals string giving edge value of each bin
+ * \param[in] outdepth 0, 2, 4 or 8 bpp; 0 is default for min depth
+ * \param[in] use_average 1 if use the average pixel value in colormap
+ * \param[in] setblack 1 if darkest color is set to black
+ * \param[in] setwhite 1 if lightest color is set to white
+ * \return pixd 2, 4 or 8 bpp quantized image with colormap,
+ * or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This function allows exact specification of the quantization bins.
+ * The string %edgevals is a space-separated set of values
+ * specifying the dividing points between output quantization bins.
+ * These threshold values are assigned to the bin with higher
+ * values, so that each of them is the smallest value in their bin.
+ * (2) The output image (pixd) depth is specified by %outdepth. The
+ * number of bins is the number of edgevals + 1. The
+ * relation between outdepth and the number of bins is:
+ * outdepth = 2 nbins <= 4
+ * outdepth = 4 nbins <= 16
+ * outdepth = 8 nbins <= 256
+ * With %outdepth == 0, the minimum required depth for the
+ * given number of bins is used.
+ * The output pixd has a colormap.
+ * (3) The last 3 args determine the specific values that go into
+ * the colormap.
+ * (4) For %use_average:
+ * ~ if TRUE, the average value of pixels falling in the bin is
+ * chosen as the representative gray value. Otherwise,
+ * ~ if FALSE, the central value of each bin is chosen as
+ * the representative value.
+ * The colormap holds the representative value.
+ * (5) For %setblack, if TRUE the darkest color is set to (0,0,0).
+ * (6) For %setwhite, if TRUE the lightest color is set to (255,255,255).
+ * (7) An alternative to using this function to quantize to
+ * unequally-spaced bins is to first transform the 8 bpp pixs
+ * using pixGammaTRC(), and follow this with pixThresholdTo4bpp().
+ * </pre>
+ */
+PIX *
+pixThresholdGrayArb(PIX *pixs,
+ const char *edgevals,
+ l_int32 outdepth,
+ l_int32 use_average,
+ l_int32 setblack,
+ l_int32 setwhite)
+{
+l_int32 *qtab;
+l_int32 w, h, d, i, j, n, wplt, wpld, val, newval;
+l_uint32 *datat, *datad, *linet, *lined;
+NUMA *na;
+PIX *pixt, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixThresholdGrayArb");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (!edgevals)
+ return (PIX *)ERROR_PTR("edgevals not defined", procName, NULL);
+ if (outdepth != 0 && outdepth != 2 && outdepth != 4 && outdepth != 8)
+ return (PIX *)ERROR_PTR("invalid outdepth", procName, NULL);
+
+ /* Parse and sort (if required) the bin edge values */
+ na = parseStringForNumbers(edgevals, " \t\n,");
+ n = numaGetCount(na);
+ if (n > 255) {
+ numaDestroy(&na);
+ return (PIX *)ERROR_PTR("more than 256 levels", procName, NULL);
+ }
+ if (outdepth == 0) {
+ if (n <= 3)
+ outdepth = 2;
+ else if (n <= 15)
+ outdepth = 4;
+ else
+ outdepth = 8;
+ } else if (n + 1 > (1 << outdepth)) {
+ L_WARNING("outdepth too small; setting to 8 bpp\n", procName);
+ outdepth = 8;
+ }
+ numaSort(na, na, L_SORT_INCREASING);
+
+ /* Make the quantization LUT and the colormap */
+ makeGrayQuantTableArb(na, outdepth, &qtab, &cmap);
+ if (use_average) { /* use the average value in each bin */
+ pixcmapDestroy(&cmap);
+ makeGrayQuantColormapArb(pixs, qtab, outdepth, &cmap);
+ }
+ pixcmapSetBlackAndWhite(cmap, setblack, setwhite);
+ numaDestroy(&na);
+
+ if ((pixd = pixCreate(w, h, outdepth)) == NULL) {
+ LEPT_FREE(qtab);
+ pixcmapDestroy(&cmap);
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ pixSetColormap(pixd, cmap);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ /* If there is a colormap in the src, remove it */
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+
+ if (outdepth == 2) {
+ thresholdTo2bppLow(datad, h, wpld, datat, wplt, qtab);
+ } else if (outdepth == 4) {
+ thresholdTo4bppLow(datad, h, wpld, datat, wplt, qtab);
+ } else {
+ for (i = 0; i < h; i++) {
+ lined = datad + i * wpld;
+ linet = datat + i * wplt;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(linet, j);
+ newval = qtab[val];
+ SET_DATA_BYTE(lined, j, newval);
+ }
+ }
+ }
+
+ LEPT_FREE(qtab);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*----------------------------------------------------------------------*
+ * Quantization tables for linear thresholds of grayscale images *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief makeGrayQuantIndexTable()
+ *
+ * \param[in] nlevels number of output levels
+ * \return table maps input gray level to colormap index,
+ * or NULL on error
+ * <pre>
+ * Notes:
+ * (1) 'nlevels' is some number between 2 and 256 (typically 8 or less).
+ * (2) The table is typically used for quantizing 2, 4 and 8 bpp
+ * grayscale src pix, and generating a colormapped dest pix.
+ * </pre>
+ */
+l_int32 *
+makeGrayQuantIndexTable(l_int32 nlevels)
+{
+l_int32 *tab;
+l_int32 i, j, thresh;
+
+ tab = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ for (i = 0; i < 256; i++) {
+ for (j = 0; j < nlevels; j++) {
+ thresh = 255 * (2 * j + 1) / (2 * nlevels - 2);
+ if (i <= thresh) {
+ tab[i] = j;
+/* lept_stderr("tab[%d] = %d\n", i, j); */
+ break;
+ }
+ }
+ }
+ return tab;
+}
+
+
+/*!
+ * \brief makeGrayQuantTargetTable()
+ *
+ * \param[in] nlevels number of output levels
+ * \param[in] depth of dest pix, in bpp; 2, 4 or 8 bpp
+ * \return table maps input gray level to thresholded gray level,
+ * or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) nlevels is some number between 2 and 2^(depth)
+ * (2) The table is used in two similar ways:
+ * ~ for 8 bpp, it quantizes to a given number of target levels
+ * ~ for 2 and 4 bpp, it thresholds to appropriate target values
+ * that will use the full dynamic range of the dest pix.
+ * (3) For depth = 8, the number of thresholds chosen is
+ * ('nlevels' - 1), and the 'nlevels' values stored in the
+ * table are at the two at the extreme ends, (0, 255), plus
+ * plus ('nlevels' - 2) values chosen at equal intervals between.
+ * For example, for depth = 8 and 'nlevels' = 3, the two
+ * threshold values are 3f and bf, and the three target pixel
+ * values are 0, 7f and ff.
+ * (4) For depth < 8, we ignore nlevels, and always use the maximum
+ * number of levels, which is 2^(depth).
+ * If you want nlevels < the maximum number, you should always
+ * use a colormap.
+ * </pre>
+ */
+static l_int32 *
+makeGrayQuantTargetTable(l_int32 nlevels,
+ l_int32 depth)
+{
+l_int32 *tab;
+l_int32 i, j, thresh, maxval, quantval;
+
+ tab = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ maxval = (1 << depth) - 1;
+ if (depth < 8)
+ nlevels = 1 << depth;
+ for (i = 0; i < 256; i++) {
+ for (j = 0; j < nlevels; j++) {
+ thresh = 255 * (2 * j + 1) / (2 * nlevels - 2);
+ if (i <= thresh) {
+ quantval = maxval * j / (nlevels - 1);
+ tab[i] = quantval;
+/* lept_stderr("tab[%d] = %d\n", i, tab[i]); */
+ break;
+ }
+ }
+ }
+ return tab;
+}
+
+
+/*----------------------------------------------------------------------*
+ * Quantization table for arbitrary thresholding of grayscale images *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief makeGrayQuantTableArb()
+ *
+ * \param[in] na numa of bin boundaries
+ * \param[in] outdepth of colormap: 1, 2, 4 or 8
+ * \param[out] ptab table mapping input gray level to cmap index
+ * \param[out] pcmap colormap
+ * \return 0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ * (1) The number of bins is the count of %na + 1.
+ * (2) The bin boundaries in na must be sorted in increasing order.
+ * (3) The table is an inverse colormap: it maps input gray level
+ * to colormap index (the bin number).
+ * (4) The colormap generated here has quantized values at the
+ * center of each bin. If you want to use the average gray
+ * value of pixels within the bin, discard the colormap and
+ * compute it using makeGrayQuantColormapArb().
+ * (5) Returns an error if there are not enough levels in the
+ * output colormap for the number of bins. The number
+ * of bins must not exceed 2^outdepth.
+ * </pre>
+ */
+l_ok
+makeGrayQuantTableArb(NUMA *na,
+ l_int32 outdepth,
+ l_int32 **ptab,
+ PIXCMAP **pcmap)
+{
+l_int32 i, j, n, jstart, ave, val;
+l_int32 *tab;
+PIXCMAP *cmap;
+
+ PROCNAME("makeGrayQuantTableArb");
+
+ if (!ptab)
+ return ERROR_INT("&tab not defined", procName, 1);
+ *ptab = NULL;
+ if (!pcmap)
+ return ERROR_INT("&cmap not defined", procName, 1);
+ *pcmap = NULL;
+ if (!na)
+ return ERROR_INT("na not defined", procName, 1);
+ n = numaGetCount(na);
+ if (n + 1 > (1 << outdepth))
+ return ERROR_INT("more bins than cmap levels", procName, 1);
+
+ if ((cmap = pixcmapCreate(outdepth)) == NULL)
+ return ERROR_INT("cmap not made", procName, 1);
+ tab = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ *ptab = tab;
+ *pcmap = cmap;
+
+ /* First n bins */
+ jstart = 0;
+ for (i = 0; i < n; i++) {
+ numaGetIValue(na, i, &val);
+ ave = (jstart + val) / 2;
+ pixcmapAddColor(cmap, ave, ave, ave);
+ for (j = jstart; j < val; j++)
+ tab[j] = i;
+ jstart = val;
+ }
+
+ /* Last bin */
+ ave = (jstart + 255) / 2;
+ pixcmapAddColor(cmap, ave, ave, ave);
+ for (j = jstart; j < 256; j++)
+ tab[j] = n;
+
+ return 0;
+}
+
+
+/*!
+ * \brief makeGrayQuantColormapArb()
+ *
+ * \param[in] pixs 8 bpp
+ * \param[in] tab table mapping input gray level to cmap index
+ * \param[in] outdepth of colormap: 1, 2, 4 or 8
+ * \param[out] pcmap colormap
+ * \return 0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ * (1) The table is a 256-entry inverse colormap: it maps input gray
+ * level to colormap index (the bin number). It is computed
+ * using makeGrayQuantTableArb().
+ * (2) The colormap generated here has quantized values at the
+ * average gray value of the pixels that are in each bin.
+ * (3) Returns an error if there are not enough levels in the
+ * output colormap for the number of bins. The number
+ * of bins must not exceed 2^outdepth.
+ * </pre>
+ */
+static l_int32
+makeGrayQuantColormapArb(PIX *pixs,
+ l_int32 *tab,
+ l_int32 outdepth,
+ PIXCMAP **pcmap)
+{
+l_int32 i, j, index, w, h, d, nbins, wpl, factor, val;
+l_int32 *bincount, *binave, *binstart;
+l_uint32 *line, *data;
+
+ PROCNAME("makeGrayQuantColormapArb");
+
+ if (!pcmap)
+ return ERROR_INT("&cmap not defined", procName, 1);
+ *pcmap = NULL;
+ if (!pixs)
+ return ERROR_INT("pixs not defined", procName, 1);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return ERROR_INT("pixs not 8 bpp", procName, 1);
+ if (!tab)
+ return ERROR_INT("tab not defined", procName, 1);
+ nbins = tab[255] + 1;
+ if (nbins > (1 << outdepth))
+ return ERROR_INT("more bins than cmap levels", procName, 1);
+
+ /* Find the count and weighted count for each bin */
+ if ((bincount = (l_int32 *)LEPT_CALLOC(nbins, sizeof(l_int32))) == NULL)
+ return ERROR_INT("calloc fail for bincount", procName, 1);
+ if ((binave = (l_int32 *)LEPT_CALLOC(nbins, sizeof(l_int32))) == NULL) {
+ LEPT_FREE(bincount);
+ return ERROR_INT("calloc fail for binave", procName, 1);
+ }
+ factor = (l_int32)(sqrt((l_float64)(w * h) / 30000.) + 0.5);
+ factor = L_MAX(1, factor);
+ data = pixGetData(pixs);
+ wpl = pixGetWpl(pixs);
+ for (i = 0; i < h; i += factor) {
+ line = data + i * wpl;
+ for (j = 0; j < w; j += factor) {
+ val = GET_DATA_BYTE(line, j);
+ bincount[tab[val]]++;
+ binave[tab[val]] += val;
+ }
+ }
+
+ /* Find the smallest gray values in each bin */
+ binstart = (l_int32 *)LEPT_CALLOC(nbins, sizeof(l_int32));
+ for (i = 1, index = 1; i < 256; i++) {
+ if (tab[i] < index) continue;
+ if (tab[i] == index)
+ binstart[index++] = i;
+ }
+
+ /* Get the averages. If there are no samples in a bin, use
+ * the center value of the bin. */
+ *pcmap = pixcmapCreate(outdepth);
+ for (i = 0; i < nbins; i++) {
+ if (bincount[i]) {
+ val = binave[i] / bincount[i];
+ } else { /* no samples in the bin */
+ if (i < nbins - 1)
+ val = (binstart[i] + binstart[i + 1]) / 2;
+ else /* last bin */
+ val = (binstart[i] + 255) / 2;
+ }
+ pixcmapAddColor(*pcmap, val, val, val);
+ }
+
+ LEPT_FREE(bincount);
+ LEPT_FREE(binave);
+ LEPT_FREE(binstart);
+ return 0;
+}
+
+
+/*--------------------------------------------------------------------*
+ * Thresholding from 32 bpp rgb to 1 bpp *
+ *--------------------------------------------------------------------*/
+/*!
+ * \brief pixGenerateMaskByBand32()
+ *
+ * \param[in] pixs 32 bpp
+ * \param[in] refval reference rgb value
+ * \param[in] delm max amount below the ref value for any component
+ * \param[in] delp max amount above the ref value for any component
+ * \param[in] fractm fractional amount below ref value for all components
+ * \param[in] fractp fractional amount above ref value for all components
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Generates a 1 bpp mask pixd, the same size as pixs, where
+ * the fg pixels in the mask within a band of rgb values
+ * surrounding %refval. The band can be chosen in two ways
+ * for each component:
+ * (a) Use (%delm, %delp) to specify how many levels down and up
+ * (b) Use (%fractm, %fractp) to specify the fractional
+ * distance toward 0 and 255, respectively.
+ * Note that %delm and %delp must be in [0 ... 255], whereas
+ * %fractm and %fractp must be in [0.0 - 1.0].
+ * (2) Either (%delm, %delp) or (%fractm, %fractp) can be used.
+ * Set each value in the other pair to 0.
+ * </pre>
+ */
+PIX *
+pixGenerateMaskByBand32(PIX *pixs,
+ l_uint32 refval,
+ l_int32 delm,
+ l_int32 delp,
+ l_float32 fractm,
+ l_float32 fractp)
+{
+l_int32 i, j, w, h, d, wpls, wpld;
+l_int32 rref, gref, bref, rval, gval, bval;
+l_int32 rmin, gmin, bmin, rmax, gmax, bmax;
+l_uint32 pixel;
+l_uint32 *datas, *datad, *lines, *lined;
+PIX *pixd;
+
+ PROCNAME("pixGenerateMaskByBand32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 32)
+ return (PIX *)ERROR_PTR("not 32 bpp", procName, NULL);
+ if (delm < 0 || delp < 0)
+ return (PIX *)ERROR_PTR("delm and delp must be >= 0", procName, NULL);
+ if (fractm < 0.0 || fractm > 1.0 || fractp < 0.0 || fractp > 1.0)
+ return (PIX *)ERROR_PTR("fractm and/or fractp invalid", procName, NULL);
+
+ extractRGBValues(refval, &rref, &gref, &bref);
+ if (fractm == 0.0 && fractp == 0.0) {
+ rmin = rref - delm;
+ gmin = gref - delm;
+ bmin = bref - delm;
+ rmax = rref + delm;
+ gmax = gref + delm;
+ bmax = bref + delm;
+ } else if (delm == 0 && delp == 0) {
+ rmin = (l_int32)((1.0 - fractm) * rref);
+ gmin = (l_int32)((1.0 - fractm) * gref);
+ bmin = (l_int32)((1.0 - fractm) * bref);
+ rmax = rref + (l_int32)(fractp * (255 - rref));
+ gmax = gref + (l_int32)(fractp * (255 - gref));
+ bmax = bref + (l_int32)(fractp * (255 - bref));
+ } else {
+ L_ERROR("bad input: either (delm, delp) or (fractm, fractp) "
+ "must be 0\n", procName);
+ return NULL;
+ }
+
+ pixd = pixCreate(w, h, 1);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ pixel = lines[j];
+ rval = (pixel >> L_RED_SHIFT) & 0xff;
+ if (rval < rmin || rval > rmax)
+ continue;
+ gval = (pixel >> L_GREEN_SHIFT) & 0xff;
+ if (gval < gmin || gval > gmax)
+ continue;
+ bval = (pixel >> L_BLUE_SHIFT) & 0xff;
+ if (bval < bmin || bval > bmax)
+ continue;
+ SET_DATA_BIT(lined, j);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixGenerateMaskByDiscr32()
+ *
+ * \param[in] pixs 32 bpp
+ * \param[in] refval1 reference rgb value
+ * \param[in] refval2 reference rgb value
+ * \param[in] distflag L_MANHATTAN_DISTANCE, L_EUCLIDEAN_DISTANCE
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Generates a 1 bpp mask pixd, the same size as pixs, where
+ * the fg pixels in the mask are those where the pixel in pixs
+ * is "closer" to refval1 than to refval2.
+ * (2) "Closer" can be defined in several ways, such as:
+ * ~ manhattan distance (L1)
+ * ~ euclidean distance (L2)
+ * ~ majority vote of the individual components
+ * Here, we have a choice of L1 or L2.
+ * </pre>
+ */
+PIX *
+pixGenerateMaskByDiscr32(PIX *pixs,
+ l_uint32 refval1,
+ l_uint32 refval2,
+ l_int32 distflag)
+{
+l_int32 i, j, w, h, d, wpls, wpld;
+l_int32 rref1, gref1, bref1, rref2, gref2, bref2, rval, gval, bval;
+l_uint32 pixel, dist1, dist2;
+l_uint32 *datas, *datad, *lines, *lined;
+PIX *pixd;
+
+ PROCNAME("pixGenerateMaskByDiscr32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 32)
+ return (PIX *)ERROR_PTR("not 32 bpp", procName, NULL);
+ if (distflag != L_MANHATTAN_DISTANCE && distflag != L_EUCLIDEAN_DISTANCE)
+ return (PIX *)ERROR_PTR("invalid distflag", procName, NULL);
+
+ extractRGBValues(refval1, &rref1, &gref1, &bref1);
+ extractRGBValues(refval2, &rref2, &gref2, &bref2);
+ pixd = pixCreate(w, h, 1);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ pixel = lines[j];
+ extractRGBValues(pixel, &rval, &gval, &bval);
+ if (distflag == L_MANHATTAN_DISTANCE) {
+ dist1 = L_ABS(rref1 - rval);
+ dist2 = L_ABS(rref2 - rval);
+ dist1 += L_ABS(gref1 - gval);
+ dist2 += L_ABS(gref2 - gval);
+ dist1 += L_ABS(bref1 - bval);
+ dist2 += L_ABS(bref2 - bval);
+ } else {
+ dist1 = (rref1 - rval) * (rref1 - rval);
+ dist2 = (rref2 - rval) * (rref2 - rval);
+ dist1 += (gref1 - gval) * (gref1 - gval);
+ dist2 += (gref2 - gval) * (gref2 - gval);
+ dist1 += (bref1 - bval) * (bref1 - bval);
+ dist2 += (bref2 - bval) * (bref2 - bval);
+ }
+ if (dist1 < dist2)
+ SET_DATA_BIT(lined, j);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*----------------------------------------------------------------------*
+ * Histogram-based grayscale quantization *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief pixGrayQuantFromHisto()
+ *
+ * \param[in] pixd [optional] quantized pix with cmap; can be null
+ * \param[in] pixs 8 bpp gray input pix; not cmapped
+ * \param[in] pixm [optional] mask over pixels in pixs to quantize
+ * \param[in] minfract minimum fraction of pixels in a set of adjacent
+ * histo bins that causes the set to be automatically
+ * set aside as a color in the colormap; must be
+ * at least 0.01
+ * \param[in] maxsize maximum number of adjacent bins allowed to represent
+ * a color, regardless of the population of pixels
+ * in the bins; must be at least 2
+ * \return pixd 8 bpp, cmapped, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is useful for quantizing images with relatively few
+ * colors, but which may have both color and gray pixels.
+ * If there are color pixels, it is assumed that an input
+ * rgb image has been color quantized first so that:
+ * ~ pixd has a colormap describing the color pixels
+ * ~ pixm is a mask over the non-color pixels in pixd
+ * ~ the colormap in pixd, and the color pixels in pixd,
+ * have been repacked to go from 0 to n-1 (n colors)
+ * If there are no color pixels, pixd and pixm are both null,
+ * and all pixels in pixs are quantized to gray.
+ * (2) A 256-entry histogram is built of the gray values in pixs.
+ * If pixm exists, the pixels contributing to the histogram are
+ * restricted to the fg of pixm. A colormap and LUT are generated
+ * from this histogram. We break up the array into a set
+ * of intervals, each one constituting a color in the colormap:
+ * An interval is identified by summing histogram bins until
+ * either the sum equals or exceeds the %minfract of the total
+ * number of pixels, or the span itself equals or exceeds %maxsize.
+ * The color of each bin is always an average of the pixels
+ * that constitute it.
+ * (3) Note that we do not specify the number of gray colors in
+ * the colormap. Instead, we specify two parameters that
+ * describe the accuracy of the color assignments; this and
+ * the actual image determine the number of resulting colors.
+ * (4) If a mask exists and it is not the same size as pixs, make
+ * a new mask the same size as pixs, with the original mask
+ * aligned at the UL corners. Set all additional pixels
+ * in the (larger) new mask set to 1, causing those pixels
+ * in pixd to be set as gray.
+ * (5) We estimate the total number of colors (color plus gray);
+ * if it exceeds 255, return null.
+ * </pre>
+ */
+PIX *
+pixGrayQuantFromHisto(PIX *pixd,
+ PIX *pixs,
+ PIX *pixm,
+ l_float32 minfract,
+ l_int32 maxsize)
+{
+l_int32 w, h, wd, hd, wm, hm, wpls, wplm, wpld;
+l_int32 nc, nestim, i, j, vals, vald;
+l_int32 *lut;
+l_uint32 *datas, *datam, *datad, *lines, *linem, *lined;
+NUMA *na;
+PIX *pixmr; /* resized mask */
+PIXCMAP *cmap;
+
+ PROCNAME("pixGrayQuantFromHisto");
+
+ if (!pixs || pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
+ if (minfract < 0.01) {
+ L_WARNING("minfract < 0.01; setting to 0.05\n", procName);
+ minfract = 0.05f;
+ }
+ if (maxsize < 2) {
+ L_WARNING("maxsize < 2; setting to 10\n", procName);
+ maxsize = 10;
+ }
+ if ((pixd && !pixm) || (!pixd && pixm))
+ return (PIX *)ERROR_PTR("(pixd,pixm) not defined together",
+ procName, NULL);
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if (pixd) {
+ if (pixGetDepth(pixm) != 1)
+ return (PIX *)ERROR_PTR("pixm not 1 bpp", procName, NULL);
+ if ((cmap = pixGetColormap(pixd)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not cmapped", procName, NULL);
+ pixGetDimensions(pixd, &wd, &hd, NULL);
+ if (w != wd || h != hd)
+ return (PIX *)ERROR_PTR("pixs, pixd sizes differ", procName, NULL);
+ nc = pixcmapGetCount(cmap);
+ nestim = nc + (l_int32)(1.5 * 255 / maxsize);
+ lept_stderr( "nestim = %d\n", nestim);
+ if (nestim > 255) {
+ L_ERROR("Estimate %d colors!\n", procName, nestim);
+ return (PIX *)ERROR_PTR("probably too many colors", procName, NULL);
+ }
+ pixGetDimensions(pixm, &wm, &hm, NULL);
+ if (w != wm || h != hm) { /* resize the mask */
+ L_WARNING("mask and dest sizes not equal\n", procName);
+ pixmr = pixCreateNoInit(w, h, 1);
+ pixRasterop(pixmr, 0, 0, wm, hm, PIX_SRC, pixm, 0, 0);
+ pixRasterop(pixmr, wm, 0, w - wm, h, PIX_SET, NULL, 0, 0);
+ pixRasterop(pixmr, 0, hm, wm, h - hm, PIX_SET, NULL, 0, 0);
+ } else {
+ pixmr = pixClone(pixm);
+ }
+ } else {
+ pixd = pixCreateTemplate(pixs);
+ cmap = pixcmapCreate(8);
+ pixSetColormap(pixd, cmap);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+
+ /* Use original mask, if it exists, to select gray pixels */
+ na = pixGetGrayHistogramMasked(pixs, pixm, 0, 0, 1);
+
+ /* Fill out the cmap with gray colors, and generate the lut
+ * for pixel assignment. Issue a warning on failure. */
+ if (numaFillCmapFromHisto(na, cmap, minfract, maxsize, &lut))
+ L_ERROR("ran out of colors in cmap!\n", procName);
+ numaDestroy(&na);
+
+ /* Assign the gray pixels to their cmap indices */
+ datas = pixGetData(pixs);
+ datad = pixGetData(pixd);
+ wpls = pixGetWpl(pixs);
+ wpld = pixGetWpl(pixd);
+ if (!pixm) {
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ vals = GET_DATA_BYTE(lines, j);
+ vald = lut[vals];
+ SET_DATA_BYTE(lined, j, vald);
+ }
+ }
+ LEPT_FREE(lut);
+ return pixd;
+ }
+
+ datam = pixGetData(pixmr);
+ wplm = pixGetWpl(pixmr);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ linem = datam + i * wplm;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ if (!GET_DATA_BIT(linem, j))
+ continue;
+ vals = GET_DATA_BYTE(lines, j);
+ vald = lut[vals];
+ SET_DATA_BYTE(lined, j, vald);
+ }
+ }
+ pixDestroy(&pixmr);
+ LEPT_FREE(lut);
+ return pixd;
+}
+
+
+/*!
+ * \brief numaFillCmapFromHisto()
+ *
+ * \param[in] na histogram of gray values
+ * \param[in] cmap 8 bpp cmap, possibly initialized with color value
+ * \param[in] minfract minimum fraction of pixels in a set of adjacent
+ * histo bins that causes the set to be automatically
+ * set aside as a color in the colormap; must be
+ * at least 0.01
+ * \param[in] maxsize maximum number of adjacent bins allowed to represent
+ * a color, regardless of the population of pixels
+ * in the bins; must be at least 2
+ * \param[out] plut lookup table from gray value to colormap index
+ * \return 0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This static function must be called from pixGrayQuantFromHisto()
+ * </pre>
+ */
+static l_int32
+numaFillCmapFromHisto(NUMA *na,
+ PIXCMAP *cmap,
+ l_float32 minfract,
+ l_int32 maxsize,
+ l_int32 **plut)
+{
+l_int32 mincount, index, sum, wtsum, span, istart, i, val, ret;
+l_int32 *iahisto, *lut;
+l_float32 total;
+
+ PROCNAME("numaFillCmapFromHisto");
+
+ if (!plut)
+ return ERROR_INT("&lut not defined", procName, 1);
+ *plut = NULL;
+ if (!na)
+ return ERROR_INT("na not defined", procName, 1);
+ if (!cmap)
+ return ERROR_INT("cmap not defined", procName, 1);
+
+ numaGetSum(na, &total);
+ mincount = (l_int32)(minfract * total);
+ iahisto = numaGetIArray(na);
+ lut = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ *plut = lut;
+ index = pixcmapGetCount(cmap); /* start with number of colors
+ * already reserved */
+
+ /* March through, associating colors with sets of adjacent
+ * gray levels. During the process, the LUT that gives
+ * the colormap index for each gray level is computed.
+ * To complete a color, either the total count must equal
+ * or exceed %mincount, or the current span of colors must
+ * equal or exceed %maxsize. An empty span is not converted
+ * into a color; it is simply ignored. When a span is completed for a
+ * color, the weighted color in the span is added to the colormap. */
+ sum = 0;
+ wtsum = 0;
+ istart = 0;
+ ret = 0;
+ for (i = 0; i < 256; i++) {
+ lut[i] = index;
+ sum += iahisto[i];
+ wtsum += i * iahisto[i];
+ span = i - istart + 1;
+ if (sum < mincount && span < maxsize)
+ continue;
+
+ if (sum == 0) { /* empty span; don't save */
+ istart = i + 1;
+ continue;
+ }
+
+ /* Found new color; sum > 0 */
+ val = (l_int32)((l_float32)wtsum / (l_float32)sum + 0.5);
+ ret = pixcmapAddColor(cmap, val, val, val);
+ istart = i + 1;
+ sum = 0;
+ wtsum = 0;
+ index++;
+ }
+ if (istart < 256 && sum > 0) { /* last one */
+ span = 256 - istart;
+ val = (l_int32)((l_float32)wtsum / (l_float32)sum + 0.5);
+ ret = pixcmapAddColor(cmap, val, val, val);
+ }
+
+ LEPT_FREE(iahisto);
+ return ret;
+}
+
+
+/*----------------------------------------------------------------------*
+ * Color quantize grayscale image using existing colormap *
+ *----------------------------------------------------------------------*/
+/*!
+ * \brief pixGrayQuantFromCmap()
+ *
+ * \param[in] pixs 8 bpp grayscale without cmap
+ * \param[in] cmap to quantize to; of dest pix
+ * \param[in] mindepth minimum depth of pixd: can be 2, 4 or 8 bpp
+ * \return pixd 2, 4 or 8 bpp, colormapped, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) In use, pixs is an 8 bpp grayscale image without a colormap.
+ * If there is an existing colormap, a warning is issued and
+ * a copy of the input pixs is returned.
+ * </pre>
+ */
+PIX *
+pixGrayQuantFromCmap(PIX *pixs,
+ PIXCMAP *cmap,
+ l_int32 mindepth)
+{
+l_int32 i, j, index, w, h, d, depth, wpls, wpld;
+l_int32 hascolor, vals, vald;
+l_int32 *tab;
+l_uint32 *datas, *datad, *lines, *lined;
+PIXCMAP *cmapd;
+PIX *pixd;
+
+ PROCNAME("pixGrayQuantFromCmap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetColormap(pixs) != NULL) {
+ L_WARNING("pixs already has a colormap; returning a copy\n", procName);
+ return pixCopy(NULL, pixs);
+ }
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (!cmap)
+ return (PIX *)ERROR_PTR("cmap not defined", procName, NULL);
+ if (mindepth != 2 && mindepth != 4 && mindepth != 8)
+ return (PIX *)ERROR_PTR("invalid mindepth", procName, NULL);
+
+ /* Make sure the colormap is gray */
+ pixcmapHasColor(cmap, &hascolor);
+ if (hascolor) {
+ L_WARNING("Converting colormap colors to gray\n", procName);
+ cmapd = pixcmapColorToGray(cmap, 0.3f, 0.5f, 0.2f);
+ } else {
+ cmapd = pixcmapCopy(cmap);
+ }
+
+ /* Make LUT into colormap */
+ tab = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ for (i = 0; i < 256; i++) {
+ pixcmapGetNearestGrayIndex(cmapd, i, &index);
+ tab[i] = index;
+ }
+
+ pixcmapGetMinDepth(cmap, &depth);
+ depth = L_MAX(depth, mindepth);
+ pixd = pixCreate(w, h, depth);
+ pixSetColormap(pixd, cmapd);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datas = pixGetData(pixs);
+ datad = pixGetData(pixd);
+ wpls = pixGetWpl(pixs);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ vals = GET_DATA_BYTE(lines, j);
+ vald = tab[vals];
+ if (depth == 2)
+ SET_DATA_DIBIT(lined, j, vald);
+ else if (depth == 4)
+ SET_DATA_QBIT(lined, j, vald);
+ else /* depth == 8 */
+ SET_DATA_BYTE(lined, j, vald);
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+#if 0 /* Documentation */
+/*--------------------------------------------------------------------*
+ * Implementation of binarization by dithering using LUTs *
+ * It is archived here. *
+ *--------------------------------------------------------------------*/
+/*!
+ * \brief pixDitherToBinaryLUT()
+ *
+ * \param[in] pixs
+ * \param[in] lowerclip lower clip distance to black; use -1 for default
+ * \param[in] upperclip upper clip distance to white; use -1 for default
+ * \return pixd dithered binary, or NULL on error
+ *
+ * We don't need two implementations of Floyd-Steinberg dithering,
+ * and this one with LUTs is a little more complicated than
+ * pixDitherToBinary(). It uses three lookup tables to generate the
+ * output pixel value and the excess or deficit carried over to the
+ * neighboring pixels. It's here for pedagogical reasons only.
+ */
+PIX *
+pixDitherToBinaryLUT(PIX *pixs,
+ l_int32 lowerclip,
+ l_int32 upperclip)
+{
+l_int32 w, h, d, wplt, wpld;
+l_int32 *tabval, *tab38, *tab14;
+l_uint32 *datat, *datad;
+l_uint32 *bufs1, *bufs2;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixDitherToBinaryLUT");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("must be 8 bpp for dithering", procName, NULL);
+ if (lowerclip < 0)
+ lowerclip = DEFAULT_CLIP_LOWER_1;
+ if (upperclip < 0)
+ upperclip = DEFAULT_CLIP_UPPER_1;
+
+ if ((pixd = pixCreate(w, h, 1)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ /* Remove colormap if it exists */
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+
+ /* Two line buffers, 1 for current line and 2 for next line */
+ bufs1 = (l_uint32 *)LEPT_CALLOC(wplt, sizeof(l_uint32));
+ bufs2 = (l_uint32 *)LEPT_CALLOC(wplt, sizeof(l_uint32));
+ if (!bufs1 || !bufs2) {
+ LEPT_FREE(bufs1);
+ LEPT_FREE(bufs2);
+ pixDestroy(&pixd);
+ pixDestroy(&pixt);
+ return (PIX *)ERROR_PTR("bufs1, bufs2 not both made", procName, NULL);
+ }
+
+ /* 3 lookup tables: 1-bit value, (3/8)excess, and (1/4)excess */
+ make8To1DitherTables(&tabval, &tab38, &tab14, lowerclip, upperclip);
+
+ ditherToBinaryLUTLow(datad, w, h, wpld, datat, wplt, bufs1, bufs2,
+ tabval, tab38, tab14);
+
+ LEPT_FREE(bufs1);
+ LEPT_FREE(bufs2);
+ LEPT_FREE(tabval);
+ LEPT_FREE(tab38);
+ LEPT_FREE(tab14);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+/*!
+ * \brief ditherToBinaryLUTLow()
+ *
+ * Low-level function for doing Floyd-Steinberg error diffusion
+ * dithering from 8 bpp (datas) to 1 bpp (datad). Two source
+ * line buffers, bufs1 and bufs2, are provided, along with three
+ * 256-entry lookup tables: tabval gives the output pixel value,
+ * tab38 gives the extra (plus or minus) transferred to the pixels
+ * directly to the left and below, and tab14 gives the extra
+ * transferred to the diagonal below. The choice of 3/8 and 1/4
+ * is traditional but arbitrary when you use a lookup table; the
+ * only constraint is that the sum is 1. See other comments below.
+ */
+void
+ditherToBinaryLUTLow(l_uint32 *datad,
+ l_int32 w,
+ l_int32 h,
+ l_int32 wpld,
+ l_uint32 *datas,
+ l_int32 wpls,
+ l_uint32 *bufs1,
+ l_uint32 *bufs2,
+ l_int32 *tabval,
+ l_int32 *tab38,
+ l_int32 *tab14)
+{
+l_int32 i;
+l_uint32 *lined;
+
+ /* do all lines except last line */
+ memcpy(bufs2, datas, 4 * wpls); /* prime the buffer */
+ for (i = 0; i < h - 1; i++) {
+ memcpy(bufs1, bufs2, 4 * wpls);
+ memcpy(bufs2, datas + (i + 1) * wpls, 4 * wpls);
+ lined = datad + i * wpld;
+ ditherToBinaryLineLUTLow(lined, w, bufs1, bufs2,
+ tabval, tab38, tab14, 0);
+ }
+
+ /* do last line */
+ memcpy(bufs1, bufs2, 4 * wpls);
+ lined = datad + (h - 1) * wpld;
+ ditherToBinaryLineLUTLow(lined, w, bufs1, bufs2, tabval, tab38, tab14, 1);
+ return;
+}
+
+/*!
+ * \brief ditherToBinaryLineLUTLow()
+ *
+ * \param[in] lined ptr to beginning of dest line
+ * \param[in] w width of image in pixels
+ * \param[in] bufs1 buffer of current source line
+ * \param[in] bufs2 buffer of next source line
+ * \param[in] tabval value to assign for current pixel
+ * \param[in] tab38 excess value to give to neighboring 3/8 pixels
+ * \param[in] tab14 excess value to give to neighboring 1/4 pixel
+ * \param[in] lastlineflag 0 if not last dest line, 1 if last dest line
+ * \return void
+ */
+void
+ditherToBinaryLineLUTLow(l_uint32 *lined,
+ l_int32 w,
+ l_uint32 *bufs1,
+ l_uint32 *bufs2,
+ l_int32 *tabval,
+ l_int32 *tab38,
+ l_int32 *tab14,
+ l_int32 lastlineflag)
+{
+l_int32 j;
+l_int32 oval, tab38val, tab14val;
+l_uint8 rval, bval, dval;
+
+ if (lastlineflag == 0) {
+ for (j = 0; j < w - 1; j++) {
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (tabval[oval])
+ SET_DATA_BIT(lined, j);
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ bval = GET_DATA_BYTE(bufs2, j);
+ dval = GET_DATA_BYTE(bufs2, j + 1);
+ tab38val = tab38[oval];
+ if (tab38val == 0)
+ continue;
+ tab14val = tab14[oval];
+ if (tab38val < 0) {
+ rval = L_MAX(0, rval + tab38val);
+ bval = L_MAX(0, bval + tab38val);
+ dval = L_MAX(0, dval + tab14val);
+ } else {
+ rval = L_MIN(255, rval + tab38val);
+ bval = L_MIN(255, bval + tab38val);
+ dval = L_MIN(255, dval + tab14val);
+ }
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ SET_DATA_BYTE(bufs2, j, bval);
+ SET_DATA_BYTE(bufs2, j + 1, dval);
+ }
+
+ /* do last column: j = w - 1 */
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (tabval[oval])
+ SET_DATA_BIT(lined, j);
+ bval = GET_DATA_BYTE(bufs2, j);
+ tab38val = tab38[oval];
+ if (tab38val < 0) {
+ bval = L_MAX(0, bval + tab38val);
+ SET_DATA_BYTE(bufs2, j, bval);
+ } else if (tab38val > 0 ) {
+ bval = L_MIN(255, bval + tab38val);
+ SET_DATA_BYTE(bufs2, j, bval);
+ }
+ } else { /* lastlineflag == 1 */
+ for (j = 0; j < w - 1; j++) {
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (tabval[oval])
+ SET_DATA_BIT(lined, j);
+ rval = GET_DATA_BYTE(bufs1, j + 1);
+ tab38val = tab38[oval];
+ if (tab38val == 0)
+ continue;
+ if (tab38val < 0)
+ rval = L_MAX(0, rval + tab38val);
+ else
+ rval = L_MIN(255, rval + tab38val);
+ SET_DATA_BYTE(bufs1, j + 1, rval);
+ }
+
+ /* do last pixel: (i, j) = (h - 1, w - 1) */
+ oval = GET_DATA_BYTE(bufs1, j);
+ if (tabval[oval])
+ SET_DATA_BIT(lined, j);
+ }
+
+ return;
+}
+
+/*!
+ * \brief make8To1DitherTables()
+ *
+ * \param[out] ptabval value assigned to output pixel; 0 or 1
+ * \param[out] ptab38 amount propagated to pixels left and below
+ * \param[out] ptab14 amount propagated to pixel to left and down
+ * \param[in] lowerclip values near 0 where the excess is not propagated
+ * \param[in] upperclip values near 255 where the deficit is not propagated
+ *
+ * \return 0 if OK, 1 on error
+ */
+l_ok
+make8To1DitherTables(l_int32 **ptabval,
+ l_int32 **ptab38,
+ l_int32 **ptab14,
+ l_int32 lowerclip,
+ l_int32 upperclip)
+{
+l_int32 i;
+l_int32 *tabval, *tab38, *tab14;
+
+ PROCNAME("make8To1DitherTables");
+
+ if (ptabval) *ptabval = NULL;
+ if (ptab38) *ptab38 = NULL;
+ if (ptab14) *ptab14 = NULL;
+ if (!ptabval || !ptab38 || !ptab14)
+ return ERROR_INT("table ptrs not all defined", procName, 1);
+
+ /* 3 lookup tables: 1-bit value, (3/8)excess, and (1/4)excess */
+ tabval = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ tab38 = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ tab14 = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ if (!tabval || !tab38 || !tab14)
+ return ERROR_INT("calloc failure to make small table", procName, 1);
+ *ptabval = tabval;
+ *ptab38 = tab38;
+ *ptab14 = tab14;
+
+ for (i = 0; i < 256; i++) {
+ if (i <= lowerclip) {
+ tabval[i] = 1;
+ tab38[i] = 0;
+ tab14[i] = 0;
+ } else if (i < 128) {
+ tabval[i] = 1;
+ tab38[i] = (3 * i + 4) / 8;
+ tab14[i] = (i + 2) / 4;
+ } else if (i < 255 - upperclip) {
+ tabval[i] = 0;
+ tab38[i] = (3 * (i - 255) + 4) / 8;
+ tab14[i] = ((i - 255) + 2) / 4;
+ } else { /* i >= 255 - upperclip */
+ tabval[i] = 0;
+ tab38[i] = 0;
+ tab14[i] = 0;
+ }
+ }
+
+ return 0;
+}
+#endif /* Documentation */