summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/ccutil/genericheap.h')
-rw-r--r--tesseract/src/ccutil/genericheap.h238
1 files changed, 238 insertions, 0 deletions
diff --git a/tesseract/src/ccutil/genericheap.h b/tesseract/src/ccutil/genericheap.h
new file mode 100644
index 00000000..c5e4539f
--- /dev/null
+++ b/tesseract/src/ccutil/genericheap.h
@@ -0,0 +1,238 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+// Author: rays@google.com (Ray Smith)
+///////////////////////////////////////////////////////////////////////
+// File: genericheap.h
+// Description: Template heap class.
+// Author: Ray Smith, based on Dan Johnson's original code.
+// Created: Wed Mar 14 08:13:00 PDT 2012
+//
+// (C) Copyright 2012, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+///////////////////////////////////////////////////////////////////////
+
+#ifndef TESSERACT_CCUTIL_GENERICHEAP_H_
+#define TESSERACT_CCUTIL_GENERICHEAP_H_
+
+#include "errcode.h"
+
+#include "genericvector.h"
+
+namespace tesseract {
+
+// GenericHeap requires 1 template argument:
+// Pair will normally be either KDPairInc<Key, Data> or KDPairDec<Key, Data>
+// for some arbitrary Key and scalar, smart pointer, or non-ownership pointer
+// Data type, according to whether a MIN heap or a MAX heap is desired,
+// respectively. Using KDPtrPairInc<Key, Data> or KDPtrPairDec<Key, Data>,
+// GenericHeap can also handle simple Data pointers and own them.
+// If no additional data is required, Pair can also be a scalar, since
+// GenericHeap doesn't look inside it except for operator<.
+//
+// The heap is stored as a packed binary tree in an array hosted by a
+// GenericVector<Pair>, with the invariant that the children of each node are
+// both NOT Pair::operator< the parent node. KDPairInc defines Pair::operator<
+// to use Key::operator< to generate a MIN heap and KDPairDec defines
+// Pair::operator< to use Key::operator> to generate a MAX heap by reversing
+// all the comparisons.
+// See http://en.wikipedia.org/wiki/Heap_(data_structure) for more detail on
+// the basic heap implementation.
+//
+// Insertion and removal are both O(log n) and, unlike the STL heap, an
+// explicit Reshuffle function allows a node to be repositioned in time O(log n)
+// after changing its value.
+//
+// Accessing the element for revaluation is a more complex matter, since the
+// index and pointer can be changed arbitrarily by heap operations.
+// Revaluation can be done by making the Data type in the Pair derived from or
+// contain a DoublePtr as its first data element, making it possible to convert
+// the pointer to a Pair using KDPairInc::RecastDataPointer.
+template <typename Pair>
+class GenericHeap {
+ public:
+ GenericHeap() = default;
+ // The initial size is only a GenericVector::reserve. It is not enforced as
+ // the size limit of the heap. Caller must implement their own enforcement.
+ explicit GenericHeap(int initial_size) {
+ heap_.reserve(initial_size);
+ }
+
+ // Simple accessors.
+ bool empty() const {
+ return heap_.empty();
+ }
+ int size() const {
+ return heap_.size();
+ }
+ int size_reserved() const {
+ return heap_.size_reserved();
+ }
+ void clear() {
+ // Clear truncates to 0 to keep the number reserved in tact.
+ heap_.truncate(0);
+ }
+ // Provides access to the underlying vector.
+ // Caution! any changes that modify the keys will invalidate the heap!
+ GenericVector<Pair>* heap() {
+ return &heap_;
+ }
+ // Provides read-only access to an element of the underlying vector.
+ const Pair& get(int index) const {
+ return heap_[index];
+ }
+
+ // Add entry to the heap, keeping the smallest item at the top, by operator<.
+ // Note that *entry is used as the source of operator=, but it is non-const
+ // to allow for a smart pointer to be contained within.
+ // Time = O(log n).
+ void Push(Pair* entry) {
+ int hole_index = heap_.size();
+ // Make a hole in the end of heap_ and sift it up to be the correct
+ // location for the new *entry. To avoid needing a default constructor
+ // for primitive types, and to allow for use of DoublePtr in the Pair
+ // somewhere, we have to incur a double copy here.
+ heap_.push_back(*entry);
+ *entry = heap_.back();
+ hole_index = SiftUp(hole_index, *entry);
+ heap_[hole_index] = *entry;
+ }
+
+ // Get the value of the top (smallest, defined by operator< ) element.
+ const Pair& PeekTop() const {
+ return heap_[0];
+ }
+ // Get the value of the worst (largest, defined by operator< ) element.
+ const Pair& PeekWorst() const { return heap_[IndexOfWorst()]; }
+
+ // Removes the top element of the heap. If entry is not nullptr, the element
+ // is copied into *entry, otherwise it is discarded.
+ // Returns false if the heap was already empty.
+ // Time = O(log n).
+ bool Pop(Pair* entry) {
+ int new_size = heap_.size() - 1;
+ if (new_size < 0)
+ return false; // Already empty.
+ if (entry != nullptr)
+ *entry = heap_[0];
+ if (new_size > 0) {
+ // Sift the hole at the start of the heap_ downwards to match the last
+ // element.
+ Pair hole_pair = heap_[new_size];
+ heap_.truncate(new_size);
+ int hole_index = SiftDown(0, hole_pair);
+ heap_[hole_index] = hole_pair;
+ } else {
+ heap_.truncate(new_size);
+ }
+ return true;
+ }
+
+ // Removes the MAXIMUM element of the heap. (MIN from a MAX heap.) If entry is
+ // not nullptr, the element is copied into *entry, otherwise it is discarded.
+ // Time = O(n). Returns false if the heap was already empty.
+ bool PopWorst(Pair* entry) {
+ int worst_index = IndexOfWorst();
+ if (worst_index < 0) return false; // It cannot be empty!
+ // Extract the worst element from the heap, leaving a hole at worst_index.
+ if (entry != nullptr)
+ *entry = heap_[worst_index];
+ int heap_size = heap_.size() - 1;
+ if (heap_size > 0) {
+ // Sift the hole upwards to match the last element of the heap_
+ Pair hole_pair = heap_[heap_size];
+ int hole_index = SiftUp(worst_index, hole_pair);
+ heap_[hole_index] = hole_pair;
+ }
+ heap_.truncate(heap_size);
+ return true;
+ }
+
+ // Returns the index of the worst element. Time = O(n/2).
+ int IndexOfWorst() const {
+ int heap_size = heap_.size();
+ if (heap_size == 0) return -1; // It cannot be empty!
+
+ // Find the maximum element. Its index is guaranteed to be greater than
+ // the index of the parent of the last element, since by the heap invariant
+ // the parent must be less than or equal to the children.
+ int worst_index = heap_size - 1;
+ int end_parent = ParentNode(worst_index);
+ for (int i = worst_index - 1; i > end_parent; --i) {
+ if (heap_[worst_index] < heap_[i]) worst_index = i;
+ }
+ return worst_index;
+ }
+
+ // The pointed-to Pair has changed its key value, so the location of pair
+ // is reshuffled to maintain the heap invariant.
+ // Must be a valid pointer to an element of the heap_!
+ // Caution! Since GenericHeap is based on GenericVector, reallocs may occur
+ // whenever the vector is extended and elements may get shuffled by any
+ // Push or Pop operation. Therefore use this function only if Data in Pair is
+ // of type DoublePtr, derived (first) from DoublePtr, or has a DoublePtr as
+ // its first element. Reshuffles the heap to maintain the invariant.
+ // Time = O(log n).
+ void Reshuffle(Pair* pair) {
+ int index = pair - &heap_[0];
+ Pair hole_pair = heap_[index];
+ index = SiftDown(index, hole_pair);
+ index = SiftUp(index, hole_pair);
+ heap_[index] = hole_pair;
+ }
+
+ private:
+ // A hole in the heap exists at hole_index, and we want to fill it with the
+ // given pair. SiftUp sifts the hole upward to the correct position and
+ // returns the destination index without actually putting pair there.
+ int SiftUp(int hole_index, const Pair& pair) {
+ int parent;
+ while (hole_index > 0 && pair < heap_[parent = ParentNode(hole_index)]) {
+ heap_[hole_index] = heap_[parent];
+ hole_index = parent;
+ }
+ return hole_index;
+ }
+
+ // A hole in the heap exists at hole_index, and we want to fill it with the
+ // given pair. SiftDown sifts the hole downward to the correct position and
+ // returns the destination index without actually putting pair there.
+ int SiftDown(int hole_index, const Pair& pair) {
+ int heap_size = heap_.size();
+ int child;
+ while ((child = LeftChild(hole_index)) < heap_size) {
+ if (child + 1 < heap_size && heap_[child + 1] < heap_[child])
+ ++child;
+ if (heap_[child] < pair) {
+ heap_[hole_index] = heap_[child];
+ hole_index = child;
+ } else {
+ break;
+ }
+ }
+ return hole_index;
+ }
+
+ // Functions to navigate the tree. Unlike the original implementation, we
+ // store the root at index 0.
+ int ParentNode(int index) const {
+ return (index + 1) / 2 - 1;
+ }
+ int LeftChild(int index) const {
+ return index * 2 + 1;
+ }
+
+ private:
+ GenericVector<Pair> heap_;
+};
+
+} // namespace tesseract
+
+#endif // TESSERACT_CCUTIL_GENERICHEAP_H_