summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/training/common/ctc.cpp')
-rw-r--r--tesseract/src/training/common/ctc.cpp413
1 files changed, 413 insertions, 0 deletions
diff --git a/tesseract/src/training/common/ctc.cpp b/tesseract/src/training/common/ctc.cpp
new file mode 100644
index 00000000..1534fe28
--- /dev/null
+++ b/tesseract/src/training/common/ctc.cpp
@@ -0,0 +1,413 @@
+///////////////////////////////////////////////////////////////////////
+// File: ctc.cpp
+// Description: Slightly improved standard CTC to compute the targets.
+// Author: Ray Smith
+// Created: Wed Jul 13 15:50:06 PDT 2016
+//
+// (C) Copyright 2016, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+///////////////////////////////////////////////////////////////////////
+
+#include "ctc.h"
+
+#include "genericvector.h"
+#include "matrix.h"
+#include "networkio.h"
+#include "network.h"
+#include "scrollview.h"
+
+#include <algorithm>
+#include <cfloat> // for FLT_MAX
+#include <memory>
+
+namespace tesseract {
+
+// Magic constants that keep CTC stable.
+// Minimum probability limit for softmax input to ctc_loss.
+const float CTC::kMinProb_ = 1e-12;
+// Maximum absolute argument to exp().
+const double CTC::kMaxExpArg_ = 80.0;
+// Minimum probability for total prob in time normalization.
+const double CTC::kMinTotalTimeProb_ = 1e-8;
+// Minimum probability for total prob in final normalization.
+const double CTC::kMinTotalFinalProb_ = 1e-6;
+
+// Builds a target using CTC. Slightly improved as follows:
+// Includes normalizations and clipping for stability.
+// labels should be pre-padded with nulls everywhere.
+// labels can be longer than the time sequence, but the total number of
+// essential labels (non-null plus nulls between equal labels) must not exceed
+// the number of timesteps in outputs.
+// outputs is the output of the network, and should have already been
+// normalized with NormalizeProbs.
+// On return targets is filled with the computed targets.
+// Returns false if there is insufficient time for the labels.
+/* static */
+bool CTC::ComputeCTCTargets(const std::vector<int>& labels, int null_char,
+ const GENERIC_2D_ARRAY<float>& outputs,
+ NetworkIO* targets) {
+ std::unique_ptr<CTC> ctc(new CTC(labels, null_char, outputs));
+ if (!ctc->ComputeLabelLimits()) {
+ return false; // Not enough time.
+ }
+ // Generate simple targets purely from the truth labels by spreading them
+ // evenly over time.
+ GENERIC_2D_ARRAY<float> simple_targets;
+ ctc->ComputeSimpleTargets(&simple_targets);
+ // Add the simple targets as a starter bias to the network outputs.
+ float bias_fraction = ctc->CalculateBiasFraction();
+ simple_targets *= bias_fraction;
+ ctc->outputs_ += simple_targets;
+ NormalizeProbs(&ctc->outputs_);
+ // Run regular CTC on the biased outputs.
+ // Run forward and backward
+ GENERIC_2D_ARRAY<double> log_alphas, log_betas;
+ ctc->Forward(&log_alphas);
+ ctc->Backward(&log_betas);
+ // Normalize and come out of log space with a clipped softmax over time.
+ log_alphas += log_betas;
+ ctc->NormalizeSequence(&log_alphas);
+ ctc->LabelsToClasses(log_alphas, targets);
+ NormalizeProbs(targets);
+ return true;
+}
+
+CTC::CTC(const std::vector<int>& labels, int null_char,
+ const GENERIC_2D_ARRAY<float>& outputs)
+ : labels_(labels), outputs_(outputs), null_char_(null_char) {
+ num_timesteps_ = outputs.dim1();
+ num_classes_ = outputs.dim2();
+ num_labels_ = labels_.size();
+}
+
+// Computes vectors of min and max label index for each timestep, based on
+// whether skippability of nulls makes it possible to complete a valid path.
+bool CTC::ComputeLabelLimits() {
+ min_labels_.resize(num_timesteps_, 0);
+ max_labels_.resize(num_timesteps_, 0);
+ int min_u = num_labels_ - 1;
+ if (labels_[min_u] == null_char_) --min_u;
+ for (int t = num_timesteps_ - 1; t >= 0; --t) {
+ min_labels_[t] = min_u;
+ if (min_u > 0) {
+ --min_u;
+ if (labels_[min_u] == null_char_ && min_u > 0 &&
+ labels_[min_u + 1] != labels_[min_u - 1]) {
+ --min_u;
+ }
+ }
+ }
+ int max_u = labels_[0] == null_char_;
+ for (int t = 0; t < num_timesteps_; ++t) {
+ max_labels_[t] = max_u;
+ if (max_labels_[t] < min_labels_[t]) return false; // Not enough room.
+ if (max_u + 1 < num_labels_) {
+ ++max_u;
+ if (labels_[max_u] == null_char_ && max_u + 1 < num_labels_ &&
+ labels_[max_u + 1] != labels_[max_u - 1]) {
+ ++max_u;
+ }
+ }
+ }
+ return true;
+}
+
+// Computes targets based purely on the labels by spreading the labels evenly
+// over the available timesteps.
+void CTC::ComputeSimpleTargets(GENERIC_2D_ARRAY<float>* targets) const {
+ // Initialize all targets to zero.
+ targets->Resize(num_timesteps_, num_classes_, 0.0f);
+ std::vector<float> half_widths;
+ std::vector<int> means;
+ ComputeWidthsAndMeans(&half_widths, &means);
+ for (int l = 0; l < num_labels_; ++l) {
+ int label = labels_[l];
+ float left_half_width = half_widths[l];
+ float right_half_width = left_half_width;
+ int mean = means[l];
+ if (label == null_char_) {
+ if (!NeededNull(l)) {
+ if ((l > 0 && mean == means[l - 1]) ||
+ (l + 1 < num_labels_ && mean == means[l + 1])) {
+ continue; // Drop overlapping null.
+ }
+ }
+ // Make sure that no space is left unoccupied and that non-nulls always
+ // peak at 1 by stretching nulls to meet their neighbors.
+ if (l > 0) left_half_width = mean - means[l - 1];
+ if (l + 1 < num_labels_) right_half_width = means[l + 1] - mean;
+ }
+ if (mean >= 0 && mean < num_timesteps_) targets->put(mean, label, 1.0f);
+ for (int offset = 1; offset < left_half_width && mean >= offset; ++offset) {
+ float prob = 1.0f - offset / left_half_width;
+ if (mean - offset < num_timesteps_ &&
+ prob > targets->get(mean - offset, label)) {
+ targets->put(mean - offset, label, prob);
+ }
+ }
+ for (int offset = 1;
+ offset < right_half_width && mean + offset < num_timesteps_;
+ ++offset) {
+ float prob = 1.0f - offset / right_half_width;
+ if (mean + offset >= 0 && prob > targets->get(mean + offset, label)) {
+ targets->put(mean + offset, label, prob);
+ }
+ }
+ }
+}
+
+// Computes mean positions and half widths of the simple targets by spreading
+// the labels evenly over the available timesteps.
+void CTC::ComputeWidthsAndMeans(std::vector<float>* half_widths,
+ std::vector<int>* means) const {
+ // Count the number of labels of each type, in regexp terms, counts plus
+ // (non-null or necessary null, which must occur at least once) and star
+ // (optional null).
+ int num_plus = 0, num_star = 0;
+ for (int i = 0; i < num_labels_; ++i) {
+ if (labels_[i] != null_char_ || NeededNull(i))
+ ++num_plus;
+ else
+ ++num_star;
+ }
+ // Compute the size for each type. If there is enough space for everything
+ // to have size>=1, then all are equal, otherwise plus_size=1 and star gets
+ // whatever is left-over.
+ float plus_size = 1.0f, star_size = 0.0f;
+ float total_floating = num_plus + num_star;
+ if (total_floating <= num_timesteps_) {
+ plus_size = star_size = num_timesteps_ / total_floating;
+ } else if (num_star > 0) {
+ star_size = static_cast<float>(num_timesteps_ - num_plus) / num_star;
+ }
+ // Set the width and compute the mean of each.
+ float mean_pos = 0.0f;
+ for (int i = 0; i < num_labels_; ++i) {
+ float half_width;
+ if (labels_[i] != null_char_ || NeededNull(i)) {
+ half_width = plus_size / 2.0f;
+ } else {
+ half_width = star_size / 2.0f;
+ }
+ mean_pos += half_width;
+ means->push_back(static_cast<int>(mean_pos));
+ mean_pos += half_width;
+ half_widths->push_back(half_width);
+ }
+}
+
+// Helper returns the index of the highest probability label at timestep t.
+static int BestLabel(const GENERIC_2D_ARRAY<float>& outputs, int t) {
+ int result = 0;
+ int num_classes = outputs.dim2();
+ const float* outputs_t = outputs[t];
+ for (int c = 1; c < num_classes; ++c) {
+ if (outputs_t[c] > outputs_t[result]) result = c;
+ }
+ return result;
+}
+
+// Calculates and returns a suitable fraction of the simple targets to add
+// to the network outputs.
+float CTC::CalculateBiasFraction() {
+ // Compute output labels via basic decoding.
+ GenericVector<int> output_labels;
+ for (int t = 0; t < num_timesteps_; ++t) {
+ int label = BestLabel(outputs_, t);
+ while (t + 1 < num_timesteps_ && BestLabel(outputs_, t + 1) == label) ++t;
+ if (label != null_char_) output_labels.push_back(label);
+ }
+ // Simple bag of labels error calculation.
+ GenericVector<int> truth_counts(num_classes_, 0);
+ GenericVector<int> output_counts(num_classes_, 0);
+ for (int l = 0; l < num_labels_; ++l) {
+ ++truth_counts[labels_[l]];
+ }
+ for (int l = 0; l < output_labels.size(); ++l) {
+ ++output_counts[output_labels[l]];
+ }
+ // Count the number of true and false positive non-nulls and truth labels.
+ int true_pos = 0, false_pos = 0, total_labels = 0;
+ for (int c = 0; c < num_classes_; ++c) {
+ if (c == null_char_) continue;
+ int truth_count = truth_counts[c];
+ int ocr_count = output_counts[c];
+ if (truth_count > 0) {
+ total_labels += truth_count;
+ if (ocr_count > truth_count) {
+ true_pos += truth_count;
+ false_pos += ocr_count - truth_count;
+ } else {
+ true_pos += ocr_count;
+ }
+ }
+ // We don't need to count classes that don't exist in the truth as
+ // false positives, because they don't affect CTC at all.
+ }
+ if (total_labels == 0) return 0.0f;
+ return exp(std::max(true_pos - false_pos, 1) * log(kMinProb_) / total_labels);
+}
+
+// Given ln(x) and ln(y), returns ln(x + y), using:
+// ln(x + y) = ln(y) + ln(1 + exp(ln(y) - ln(x)), ensuring that ln(x) is the
+// bigger number to maximize precision.
+static double LogSumExp(double ln_x, double ln_y) {
+ if (ln_x >= ln_y) {
+ return ln_x + log1p(exp(ln_y - ln_x));
+ } else {
+ return ln_y + log1p(exp(ln_x - ln_y));
+ }
+}
+
+// Runs the forward CTC pass, filling in log_probs.
+void CTC::Forward(GENERIC_2D_ARRAY<double>* log_probs) const {
+ log_probs->Resize(num_timesteps_, num_labels_, -FLT_MAX);
+ log_probs->put(0, 0, log(outputs_(0, labels_[0])));
+ if (labels_[0] == null_char_)
+ log_probs->put(0, 1, log(outputs_(0, labels_[1])));
+ for (int t = 1; t < num_timesteps_; ++t) {
+ const float* outputs_t = outputs_[t];
+ for (int u = min_labels_[t]; u <= max_labels_[t]; ++u) {
+ // Continuing the same label.
+ double log_sum = log_probs->get(t - 1, u);
+ // Change from previous label.
+ if (u > 0) {
+ log_sum = LogSumExp(log_sum, log_probs->get(t - 1, u - 1));
+ }
+ // Skip the null if allowed.
+ if (u >= 2 && labels_[u - 1] == null_char_ &&
+ labels_[u] != labels_[u - 2]) {
+ log_sum = LogSumExp(log_sum, log_probs->get(t - 1, u - 2));
+ }
+ // Add in the log prob of the current label.
+ double label_prob = outputs_t[labels_[u]];
+ log_sum += log(label_prob);
+ log_probs->put(t, u, log_sum);
+ }
+ }
+}
+
+// Runs the backward CTC pass, filling in log_probs.
+void CTC::Backward(GENERIC_2D_ARRAY<double>* log_probs) const {
+ log_probs->Resize(num_timesteps_, num_labels_, -FLT_MAX);
+ log_probs->put(num_timesteps_ - 1, num_labels_ - 1, 0.0);
+ if (labels_[num_labels_ - 1] == null_char_)
+ log_probs->put(num_timesteps_ - 1, num_labels_ - 2, 0.0);
+ for (int t = num_timesteps_ - 2; t >= 0; --t) {
+ const float* outputs_tp1 = outputs_[t + 1];
+ for (int u = min_labels_[t]; u <= max_labels_[t]; ++u) {
+ // Continuing the same label.
+ double log_sum = log_probs->get(t + 1, u) + log(outputs_tp1[labels_[u]]);
+ // Change from previous label.
+ if (u + 1 < num_labels_) {
+ double prev_prob = outputs_tp1[labels_[u + 1]];
+ log_sum =
+ LogSumExp(log_sum, log_probs->get(t + 1, u + 1) + log(prev_prob));
+ }
+ // Skip the null if allowed.
+ if (u + 2 < num_labels_ && labels_[u + 1] == null_char_ &&
+ labels_[u] != labels_[u + 2]) {
+ double skip_prob = outputs_tp1[labels_[u + 2]];
+ log_sum =
+ LogSumExp(log_sum, log_probs->get(t + 1, u + 2) + log(skip_prob));
+ }
+ log_probs->put(t, u, log_sum);
+ }
+ }
+}
+
+// Normalizes and brings probs out of log space with a softmax over time.
+void CTC::NormalizeSequence(GENERIC_2D_ARRAY<double>* probs) const {
+ double max_logprob = probs->Max();
+ for (int u = 0; u < num_labels_; ++u) {
+ double total = 0.0;
+ for (int t = 0; t < num_timesteps_; ++t) {
+ // Separate impossible path from unlikely probs.
+ double prob = probs->get(t, u);
+ if (prob > -FLT_MAX)
+ prob = ClippedExp(prob - max_logprob);
+ else
+ prob = 0.0;
+ total += prob;
+ probs->put(t, u, prob);
+ }
+ // Note that although this is a probability distribution over time and
+ // therefore should sum to 1, it is important to allow some labels to be
+ // all zero, (or at least tiny) as it is necessary to skip some blanks.
+ if (total < kMinTotalTimeProb_) total = kMinTotalTimeProb_;
+ for (int t = 0; t < num_timesteps_; ++t)
+ probs->put(t, u, probs->get(t, u) / total);
+ }
+}
+
+// For each timestep computes the max prob for each class over all
+// instances of the class in the labels_, and sets the targets to
+// the max observed prob.
+void CTC::LabelsToClasses(const GENERIC_2D_ARRAY<double>& probs,
+ NetworkIO* targets) const {
+ // For each timestep compute the max prob for each class over all
+ // instances of the class in the labels_.
+ GenericVector<double> class_probs;
+ for (int t = 0; t < num_timesteps_; ++t) {
+ float* targets_t = targets->f(t);
+ class_probs.init_to_size(num_classes_, 0.0);
+ for (int u = 0; u < num_labels_; ++u) {
+ double prob = probs(t, u);
+ // Note that although Graves specifies sum over all labels of the same
+ // class, we need to allow skipped blanks to go to zero, so they don't
+ // interfere with the non-blanks, so max is better than sum.
+ if (prob > class_probs[labels_[u]]) class_probs[labels_[u]] = prob;
+ // class_probs[labels_[u]] += prob;
+ }
+ int best_class = 0;
+ for (int c = 0; c < num_classes_; ++c) {
+ targets_t[c] = class_probs[c];
+ if (class_probs[c] > class_probs[best_class]) best_class = c;
+ }
+ }
+}
+
+// Normalizes the probabilities such that no target has a prob below min_prob,
+// and, provided that the initial total is at least min_total_prob, then all
+// probs will sum to 1, otherwise to sum/min_total_prob. The maximum output
+// probability is thus 1 - (num_classes-1)*min_prob.
+/* static */
+void CTC::NormalizeProbs(GENERIC_2D_ARRAY<float>* probs) {
+ int num_timesteps = probs->dim1();
+ int num_classes = probs->dim2();
+ for (int t = 0; t < num_timesteps; ++t) {
+ float* probs_t = (*probs)[t];
+ // Compute the total and clip that to prevent amplification of noise.
+ double total = 0.0;
+ for (int c = 0; c < num_classes; ++c) total += probs_t[c];
+ if (total < kMinTotalFinalProb_) total = kMinTotalFinalProb_;
+ // Compute the increased total as a result of clipping.
+ double increment = 0.0;
+ for (int c = 0; c < num_classes; ++c) {
+ double prob = probs_t[c] / total;
+ if (prob < kMinProb_) increment += kMinProb_ - prob;
+ }
+ // Now normalize with clipping. Any additional clipping is negligible.
+ total += increment;
+ for (int c = 0; c < num_classes; ++c) {
+ float prob = probs_t[c] / total;
+ probs_t[c] = std::max(prob, kMinProb_);
+ }
+ }
+}
+
+// Returns true if the label at index is a needed null.
+bool CTC::NeededNull(int index) const {
+ return labels_[index] == null_char_ && index > 0 && index + 1 < num_labels_ &&
+ labels_[index + 1] == labels_[index - 1];
+}
+
+} // namespace tesseract