1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Path flattening algorithms */
#include "string_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxarith.h"
#include "gxfixed.h"
#include "gzpath.h"
#include "memory_.h"
/* ---------------- Curve flattening ---------------- */
/*
* To calculate how many points to sample along a path in order to
* approximate it to the desired degree of flatness, we define
* dist((x,y)) = abs(x) + abs(y);
* then the number of points we need is
* N = 1 + sqrt(3/4 * D / flatness),
* where
* D = max(dist(p0 - 2*p1 + p2), dist(p1 - 2*p2 + p3)).
* Since we are going to use a power of 2 for the number of intervals,
* we can avoid the square root by letting
* N = 1 + 2^(ceiling(log2(3/4 * D / flatness) / 2)).
* (Reference: DEC Paris Research Laboratory report #1, May 1989.)
*
* We treat two cases specially. First, if the curve is very
* short, we halve the flatness, to avoid turning short shallow curves
* into short straight lines. Second, if the curve forms part of a
* character (indicated by flatness = 0), we let
* N = 1 + 2 * max(abs(x3-x0), abs(y3-y0)).
* This is probably too conservative, but it produces good results.
*/
int
gx_curve_log2_samples(fixed x0, fixed y0, const curve_segment * pc,
fixed fixed_flat)
{
fixed
x03 = pc->pt.x - x0,
y03 = pc->pt.y - y0;
int k;
if (x03 < 0)
x03 = -x03;
if (y03 < 0)
y03 = -y03;
if ((x03 | y03) < int2fixed(16))
fixed_flat >>= 1;
if (fixed_flat == 0) { /* Use the conservative method. */
fixed m = max(x03, y03);
for (k = 1; m > fixed_1;)
k++, m >>= 1;
} else {
const fixed
x12 = pc->p1.x - pc->p2.x, y12 = pc->p1.y - pc->p2.y,
dx0 = x0 - pc->p1.x - x12, dy0 = y0 - pc->p1.y - y12,
dx1 = x12 - pc->p2.x + pc->pt.x, dy1 = y12 - pc->p2.y + pc->pt.y,
adx0 = any_abs(dx0), ady0 = any_abs(dy0),
adx1 = any_abs(dx1), ady1 = any_abs(dy1);
fixed
d = max(adx0, adx1) + max(ady0, ady1);
/*
* The following statement is split up to work around a
* bug in the gcc 2.7.2 optimizer on H-P RISC systems.
*/
uint qtmp = d - (d >> 2) /* 3/4 * D */ +fixed_flat - 1;
uint q = qtmp / fixed_flat;
if_debug6('2', "[2]d01=%g,%g d12=%g,%g d23=%g,%g\n",
fixed2float(pc->p1.x - x0), fixed2float(pc->p1.y - y0),
fixed2float(-x12), fixed2float(-y12),
fixed2float(pc->pt.x - pc->p2.x), fixed2float(pc->pt.y - pc->p2.y));
if_debug2('2', " D=%f, flat=%f,",
fixed2float(d), fixed2float(fixed_flat));
/* Now we want to set k = ceiling(log2(q) / 2). */
for (k = 0; q > 1;)
k++, q = (q + 3) >> 2;
if_debug1('2', " k=%d\n", k);
}
return k;
}
/*
* Split a curve segment into two pieces at the (parametric) midpoint.
* Algorithm is from "The Beta2-split: A special case of the Beta-spline
* Curve and Surface Representation," B. A. Barsky and A. D. DeRose, IEEE,
* 1985, courtesy of Crispin Goswell.
*/
static void
split_curve_midpoint(fixed x0, fixed y0, const curve_segment * pc,
curve_segment * pc1, curve_segment * pc2)
{ /*
* We have to define midpoint carefully to avoid overflow.
* (If it overflows, something really pathological is going
* on, but we could get infinite recursion that way....)
*/
#define midpoint(a,b)\
(arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
fixed x12 = midpoint(pc->p1.x, pc->p2.x);
fixed y12 = midpoint(pc->p1.y, pc->p2.y);
/*
* pc1 or pc2 may be the same as pc, so we must be a little careful
* about the order in which we store the results.
*/
pc1->p1.x = midpoint(x0, pc->p1.x);
pc1->p1.y = midpoint(y0, pc->p1.y);
pc2->p2.x = midpoint(pc->p2.x, pc->pt.x);
pc2->p2.y = midpoint(pc->p2.y, pc->pt.y);
pc1->p2.x = midpoint(pc1->p1.x, x12);
pc1->p2.y = midpoint(pc1->p1.y, y12);
pc2->p1.x = midpoint(x12, pc2->p2.x);
pc2->p1.y = midpoint(y12, pc2->p2.y);
if (pc2 != pc)
pc2->pt.x = pc->pt.x,
pc2->pt.y = pc->pt.y;
pc1->pt.x = midpoint(pc1->p2.x, pc2->p1.x);
pc1->pt.y = midpoint(pc1->p2.y, pc2->p1.y);
#undef midpoint
}
static inline void
print_points(const gs_fixed_point *points, int count)
{
#ifdef DEBUG
int i;
if (!gs_debug_c('3'))
return;
for (i = 0; i < count; i++)
if_debug2('3', "[3]out x=%ld y=%ld\n",
(long)points[i].x, (long)points[i].y);
#endif
}
bool
curve_coeffs_ranged(fixed x0, fixed x1, fixed x2, fixed x3,
fixed y0, fixed y1, fixed y2, fixed y3,
fixed *ax, fixed *bx, fixed *cx,
fixed *ay, fixed *by, fixed *cy,
int k)
{
fixed x01, x12, y01, y12;
curve_points_to_coefficients(x0, x1, x2, x3,
*ax, *bx, *cx, x01, x12);
curve_points_to_coefficients(y0, y1, y2, y3,
*ay, *by, *cy, y01, y12);
# define max_fast (max_fixed / 6)
# define min_fast (-max_fast)
# define in_range(v) (v < max_fast && v > min_fast)
if (k > k_sample_max ||
!in_range(*ax) || !in_range(*ay) ||
!in_range(*bx) || !in_range(*by) ||
!in_range(*cx) || !in_range(*cy)
)
return false;
#undef max_fast
#undef min_fast
#undef in_range
return true;
}
/* Initialize the iterator.
Momotonic curves with non-zero length are only allowed.
*/
bool
gx_flattened_iterator__init(gx_flattened_iterator *self,
fixed x0, fixed y0, const curve_segment *pc, int k)
{
/* Note : Immediately after the ininialization it keeps an invalid (zero length) segment. */
fixed x1, y1, x2, y2;
const int k2 = k << 1, k3 = k2 + k;
fixed bx2, by2, ax6, ay6;
x1 = pc->p1.x;
y1 = pc->p1.y;
x2 = pc->p2.x;
y2 = pc->p2.y;
self->x0 = self->lx0 = self->lx1 = x0;
self->y0 = self->ly0 = self->ly1 = y0;
self->x3 = pc->pt.x;
self->y3 = pc->pt.y;
if (!curve_coeffs_ranged(self->x0, x1, x2, self->x3,
self->y0, y1, y2, self->y3,
&self->ax, &self->bx, &self->cx,
&self->ay, &self->by, &self->cy, k))
return false;
self->curve = true;
self->k = k;
#ifdef DEBUG
if (gs_debug_c('3')) {
dlprintf4("[3]x0=%f y0=%f x1=%f y1=%f\n",
fixed2float(self->x0), fixed2float(self->y0),
fixed2float(x1), fixed2float(y1));
dlprintf5(" x2=%f y2=%f x3=%f y3=%f k=%d\n",
fixed2float(x2), fixed2float(y2),
fixed2float(self->x3), fixed2float(self->y3), self->k);
}
#endif
if (k == -1) {
/* A special hook for gx_subdivide_curve_rec.
Only checked the range.
Returning with no initialization. */
return true;
}
self->rmask = (1 << k3) - 1;
self->i = (1 << k);
self->rx = self->ry = 0;
if_debug6('3', "[3]ax=%f bx=%f cx=%f\n ay=%f by=%f cy=%f\n",
fixed2float(self->ax), fixed2float(self->bx), fixed2float(self->cx),
fixed2float(self->ay), fixed2float(self->by), fixed2float(self->cy));
bx2 = self->bx << 1;
by2 = self->by << 1;
ax6 = ((self->ax << 1) + self->ax) << 1;
ay6 = ((self->ay << 1) + self->ay) << 1;
self->idx = arith_rshift(self->cx, self->k);
self->idy = arith_rshift(self->cy, self->k);
self->rdx = ((uint)self->cx << k2) & self->rmask;
self->rdy = ((uint)self->cy << k2) & self->rmask;
/* bx/y terms */
self->id2x = arith_rshift(bx2, k2);
self->id2y = arith_rshift(by2, k2);
self->rd2x = ((uint)bx2 << self->k) & self->rmask;
self->rd2y = ((uint)by2 << self->k) & self->rmask;
# define adjust_rem(r, q, rmask) if ( r > rmask ) q ++, r &= rmask
/* We can compute all the remainders as ints, */
/* because we know they don't exceed M. */
/* cx/y terms */
self->idx += arith_rshift_1(self->id2x);
self->idy += arith_rshift_1(self->id2y);
self->rdx += ((uint)self->bx << self->k) & self->rmask,
self->rdy += ((uint)self->by << self->k) & self->rmask;
adjust_rem(self->rdx, self->idx, self->rmask);
adjust_rem(self->rdy, self->idy, self->rmask);
/* ax/y terms */
self->idx += arith_rshift(self->ax, k3);
self->idy += arith_rshift(self->ay, k3);
self->rdx += (uint)self->ax & self->rmask;
self->rdy += (uint)self->ay & self->rmask;
adjust_rem(self->rdx, self->idx, self->rmask);
adjust_rem(self->rdy, self->idy, self->rmask);
self->id2x += self->id3x = arith_rshift(ax6, k3);
self->id2y += self->id3y = arith_rshift(ay6, k3);
self->rd2x += self->rd3x = (uint)ax6 & self->rmask,
self->rd2y += self->rd3y = (uint)ay6 & self->rmask;
adjust_rem(self->rd2x, self->id2x, self->rmask);
adjust_rem(self->rd2y, self->id2y, self->rmask);
# undef adjust_rem
return true;
}
static inline bool
check_diff_overflow(fixed v0, fixed v1)
{
if (v1 > 0)
return (v0 < min_fixed + v1);
else if (v1 < 0)
return (v0 > max_fixed + v1);
return false;
}
bool
gx_check_fixed_diff_overflow(fixed v0, fixed v1)
{
return check_diff_overflow(v0, v1);
}
bool
gx_check_fixed_sum_overflow(fixed v0, fixed v1)
{
/* We assume that clamp_point_aux have been applied to v1,
thus -v alweays exists.
*/
return check_diff_overflow(v0, -v1);
}
/* Initialize the iterator with a line. */
bool
gx_flattened_iterator__init_line(gx_flattened_iterator *self,
fixed x0, fixed y0, fixed x1, fixed y1)
{
bool ox = check_diff_overflow(x0, x1);
bool oy = check_diff_overflow(y0, y1);
self->x0 = self->lx0 = self->lx1 = x0;
self->y0 = self->ly0 = self->ly1 = y0;
self->x3 = x1;
self->y3 = y1;
if (ox || oy) {
/* Subdivide a long line into 4 segments, because the filling algorithm
and the stroking algorithm need to compute differences
of coordinates of end points.
We can't use 2 segments, because gx_flattened_iterator__next
implements a special code for that case,
which requires differences of coordinates as well.
*/
/* Note : the result of subdivision may be not strongly colinear. */
self->ax = self->bx = 0;
self->ay = self->by = 0;
self->cx = ((ox ? (x1 >> 1) - (x0 >> 1) : (x1 - x0) >> 1) + 1) >> 1;
self->cy = ((oy ? (y1 >> 1) - (y0 >> 1) : (y1 - y0) >> 1) + 1) >> 1;
self->rd3x = self->rd3y = self->id3x = self->id3y = 0;
self->rd2x = self->rd2y = self->id2x = self->id2y = 0;
self->idx = self->cx;
self->idy = self->cy;
self->rdx = self->rdy = 0;
self->rx = self->ry = 0;
self->rmask = 0;
self->k = 2;
self->i = 4;
} else {
self->k = 0;
self->i = 1;
}
self->curve = false;
return true;
}
#ifdef DEBUG
static inline void
gx_flattened_iterator__print_state(gx_flattened_iterator *self)
{
if (!gs_debug_c('3'))
return;
dlprintf4("[3]dx=%f+%d, dy=%f+%d\n",
fixed2float(self->idx), self->rdx,
fixed2float(self->idy), self->rdy);
dlprintf4(" d2x=%f+%d, d2y=%f+%d\n",
fixed2float(self->id2x), self->rd2x,
fixed2float(self->id2y), self->rd2y);
dlprintf4(" d3x=%f+%d, d3y=%f+%d\n",
fixed2float(self->id3x), self->rd3x,
fixed2float(self->id3y), self->rd3y);
}
#endif
/* Move to the next segment and store it to self->lx0, self->ly0, self->lx1, self->ly1 .
* Return true iff there exist more segments.
*/
int
gx_flattened_iterator__next(gx_flattened_iterator *self)
{
/*
* We can compute successive values by finite differences,
* using the formulas:
x(t) =
a*t^3 + b*t^2 + c*t + d =>
dx(t) = x(t+e)-x(t) =
a*(3*t^2*e + 3*t*e^2 + e^3) + b*(2*t*e + e^2) + c*e =
(3*a*e)*t^2 + (3*a*e^2 + 2*b*e)*t + (a*e^3 + b*e^2 + c*e) =>
d2x(t) = dx(t+e)-dx(t) =
(3*a*e)*(2*t*e + e^2) + (3*a*e^2 + 2*b*e)*e =
(6*a*e^2)*t + (6*a*e^3 + 2*b*e^2) =>
d3x(t) = d2x(t+e)-d2x(t) =
6*a*e^3;
x(0) = d, dx(0) = (a*e^3 + b*e^2 + c*e),
d2x(0) = 6*a*e^3 + 2*b*e^2;
* In these formulas, e = 1/2^k; of course, there are separate
* computations for the x and y values.
*
* There is a tradeoff in doing the above computation in fixed
* point. If we separate out the constant term (d) and require that
* all the other values fit in a long, then on a 32-bit machine with
* 12 bits of fraction in a fixed, k = 4 implies a maximum curve
* size of 128 pixels; anything larger requires subdividing the
* curve. On the other hand, doing the computations in explicit
* double precision slows down the loop by a factor of 3 or so. We
* found to our surprise that the latter is actually faster, because
* the additional subdivisions cost more than the slower loop.
*
* We represent each quantity as I+R/M, where I is an "integer" and
* the "remainder" R lies in the range 0 <= R < M=2^(3*k). Note
* that R may temporarily exceed M; for this reason, we require that
* M have at least one free high-order bit. To reduce the number of
* variables, we don't actually compute M, only M-1 (rmask). */
fixed x = self->lx1, y = self->ly1;
if (self->i <= 0)
return_error(gs_error_unregistered); /* Must not happen. */
self->lx0 = self->lx1;
self->ly0 = self->ly1;
/* Fast check for N == 3, a common special case for small characters. */
if (self->k <= 1) {
--self->i;
if (self->i == 0)
goto last;
# define poly2(a,b,c) arith_rshift_1(arith_rshift_1(arith_rshift_1(a) + b) + c)
x += poly2(self->ax, self->bx, self->cx);
y += poly2(self->ay, self->by, self->cy);
# undef poly2
if_debug2('3', "[3]dx=%f, dy=%f\n",
fixed2float(x - self->x0), fixed2float(y - self->y0));
if_debug5('3', "[3]%s x=%g, y=%g x=%ld y=%ld\n",
(((x ^ self->x0) | (y ^ self->y0)) & float2fixed(-0.5) ?
"add" : "skip"),
fixed2float(x), fixed2float(y), (long)x, (long)y);
self->lx1 = x, self->ly1 = y;
return true;
} else {
--self->i;
if (self->i == 0)
goto last; /* don't bother with last accum */
# ifdef DEBUG
gx_flattened_iterator__print_state(self);
# endif
# define accum(i, r, di, dr, rmask)\
if ( (r += dr) > rmask ) r &= rmask, i += di + 1;\
else i += di
accum(x, self->rx, self->idx, self->rdx, self->rmask);
accum(y, self->ry, self->idy, self->rdy, self->rmask);
accum(self->idx, self->rdx, self->id2x, self->rd2x, self->rmask);
accum(self->idy, self->rdy, self->id2y, self->rd2y, self->rmask);
accum(self->id2x, self->rd2x, self->id3x, self->rd3x, self->rmask);
accum(self->id2y, self->rd2y, self->id3y, self->rd3y, self->rmask);
if_debug5('3', "[3]%s x=%g, y=%g x=%ld y=%ld\n",
(((x ^ self->lx0) | (y ^ self->ly0)) & float2fixed(-0.5) ?
"add" : "skip"),
fixed2float(x), fixed2float(y), (long)x, (long)y);
# undef accum
self->lx1 = self->x = x;
self->ly1 = self->y = y;
return true;
}
last:
self->lx1 = self->x3;
self->ly1 = self->y3;
if_debug4('3', "[3]last x=%g, y=%g x=%ld y=%ld\n",
fixed2float(self->lx1), fixed2float(self->ly1),
(long)self->lx1, (long)self->ly1);
return false;
}
static inline void
gx_flattened_iterator__unaccum(gx_flattened_iterator *self)
{
# define unaccum(i, r, di, dr, rmask)\
if ( r < dr ) r += rmask + 1 - dr, i -= di + 1;\
else r -= dr, i -= di
unaccum(self->id2x, self->rd2x, self->id3x, self->rd3x, self->rmask);
unaccum(self->id2y, self->rd2y, self->id3y, self->rd3y, self->rmask);
unaccum(self->idx, self->rdx, self->id2x, self->rd2x, self->rmask);
unaccum(self->idy, self->rdy, self->id2y, self->rd2y, self->rmask);
unaccum(self->x, self->rx, self->idx, self->rdx, self->rmask);
unaccum(self->y, self->ry, self->idy, self->rdy, self->rmask);
# undef unaccum
}
/* Move back to the previous segment and store it to self->lx0, self->ly0, self->lx1, self->ly1 .
* This only works for states reached with gx_flattened_iterator__next.
* Return true iff there exist more segments.
*/
int
gx_flattened_iterator__prev(gx_flattened_iterator *self)
{
bool last; /* i.e. the first one in the forth order. */
if (self->i >= 1 << self->k)
return_error(gs_error_unregistered); /* Must not happen. */
self->lx1 = self->lx0;
self->ly1 = self->ly0;
if (self->k <= 1) {
/* If k==0, we have a single segment, return it.
If k==1 && i < 2, return the last segment.
Otherwise must not pass here.
We caould allow to pass here with self->i == 1 << self->k,
but we want to check the assertion about the last segment below.
*/
self->i++;
self->lx0 = self->x0;
self->ly0 = self->y0;
return false;
}
gx_flattened_iterator__unaccum(self);
self->i++;
# ifdef DEBUG
if_debug5('3', "[3]%s x=%g, y=%g x=%ld y=%ld\n",
(((self->x ^ self->lx1) | (self->y ^ self->ly1)) & float2fixed(-0.5) ?
"add" : "skip"),
fixed2float(self->x), fixed2float(self->y),
(long)self->x, (long)self->y);
gx_flattened_iterator__print_state(self);
# endif
last = (self->i == (1 << self->k) - 1);
self->lx0 = self->x;
self->ly0 = self->y;
if (last)
if (self->lx0 != self->x0 || self->ly0 != self->y0)
return_error(gs_error_unregistered); /* Must not happen. */
return !last;
}
/* Switching from the forward scanning to the backward scanning for the filtered1. */
void
gx_flattened_iterator__switch_to_backscan(gx_flattened_iterator *self, bool not_first)
{
/* When scanning forth, the accumulator stands on the end of a segment,
except for the last segment.
When scanning back, the accumulator should stand on the beginning of a segment.
Assuming at least one forward step is done.
*/
if (not_first)
if (self->i > 0 && self->k != 1 /* This case doesn't use the accumulator. */)
gx_flattened_iterator__unaccum(self);
}
#define max_points 50 /* arbitrary */
static int
generate_segments(gx_path * ppath, const gs_fixed_point *points,
int count, segment_notes notes)
{
if (notes & sn_not_first) {
print_points(points, count);
return gx_path_add_lines_notes(ppath, points, count, notes);
} else {
int code;
print_points(points, 1);
code = gx_path_add_line_notes(ppath, points[0].x, points[0].y, notes);
if (code < 0)
return code;
print_points(points + 1, count - 1);
return gx_path_add_lines_notes(ppath, points + 1, count - 1, notes | sn_not_first);
}
}
static int
gx_subdivide_curve_rec(gx_flattened_iterator *self,
gx_path * ppath, int k, curve_segment * pc,
segment_notes notes, gs_fixed_point *points)
{
int code;
top :
if (!gx_flattened_iterator__init(self,
ppath->position.x, ppath->position.y, pc, k)) {
/* Curve is too long. Break into two pieces and recur. */
curve_segment cseg;
k--;
split_curve_midpoint(ppath->position.x, ppath->position.y, pc, &cseg, pc);
code = gx_subdivide_curve_rec(self, ppath, k, &cseg, notes, points);
if (code < 0)
return code;
notes |= sn_not_first;
goto top;
} else if (k == -1) {
/* fixme : Don't need to init the iterator. Just wanted to check in_range. */
return gx_path_add_curve_notes(ppath, pc->p1.x, pc->p1.y, pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y, notes);
} else {
gs_fixed_point *ppt = points;
bool more;
for(;;) {
code = gx_flattened_iterator__next(self);
if (code < 0)
return code;
more = code;
ppt->x = self->lx1;
ppt->y = self->ly1;
ppt++;
if (ppt == &points[max_points] || !more) {
gs_fixed_point *pe = (more ? ppt - 2 : ppt);
code = generate_segments(ppath, points, pe - points, notes);
if (code < 0)
return code;
if (!more)
return 0;
notes |= sn_not_first;
memcpy(points, pe, (char *)ppt - (char *)pe);
ppt = points + (ppt - pe);
}
}
}
}
#undef coord_near
/*
* Flatten a segment of the path by repeated sampling.
* 2^k is the number of lines to produce (i.e., the number of points - 1,
* including the endpoints); we require k >= 1.
* If k or any of the coefficient values are too large,
* use recursive subdivision to whittle them down.
*/
int
gx_subdivide_curve(gx_path * ppath, int k, curve_segment * pc, segment_notes notes)
{
gs_fixed_point points[max_points + 1];
gx_flattened_iterator iter;
return gx_subdivide_curve_rec(&iter, ppath, k, pc, notes, points);
}
#undef max_points
|