diff options
author | Justin Lecher <jlec@gentoo.org> | 2010-12-23 08:26:55 +0000 |
---|---|---|
committer | Justin Lecher <jlec@gentoo.org> | 2010-12-23 08:26:55 +0000 |
commit | 650e8818de572d98772e0c2949741c0ab4ba1e2a (patch) | |
tree | cc34c6b2b8640610cb49ebdc21b3b15fabd9d31b /sci-mathematics/fann/files | |
parent | ppc64 stable wrt #341703 (diff) | |
download | gentoo-2-650e8818de572d98772e0c2949741c0ab4ba1e2a.tar.gz gentoo-2-650e8818de572d98772e0c2949741c0ab4ba1e2a.tar.bz2 gentoo-2-650e8818de572d98772e0c2949741c0ab4ba1e2a.zip |
Verify and potentially improve Python-related code, #316231; removed old patches
(Portage version: 2.2.0_alpha6/cvs/Linux x86_64)
Diffstat (limited to 'sci-mathematics/fann/files')
-rw-r--r-- | sci-mathematics/fann/files/fann-1.2.0-r1.patch | 417 | ||||
-rw-r--r-- | sci-mathematics/fann/files/fann-1.2.0-setup.py | 46 |
2 files changed, 0 insertions, 463 deletions
diff --git a/sci-mathematics/fann/files/fann-1.2.0-r1.patch b/sci-mathematics/fann/files/fann-1.2.0-r1.patch deleted file mode 100644 index 12aae86dad7e..000000000000 --- a/sci-mathematics/fann/files/fann-1.2.0-r1.patch +++ /dev/null @@ -1,417 +0,0 @@ -diff -N -u -r fann-1.2.0.orig/python/examples/mushroom.py fann-1.2.0.my/python/examples/mushroom.py ---- fann-1.2.0.orig/python/examples/mushroom.py 2004-07-24 01:36:04.000000000 +0200 -+++ fann-1.2.0.my/python/examples/mushroom.py 2005-01-03 20:48:21.000000000 +0100 -@@ -20,9 +20,9 @@ - - # start training the network - print "Training network" --ann.set_activation_function_hidden(fann.FANN_SIGMOID_SYMMETRIC_STEPWISE) --ann.set_activation_function_output(fann.FANN_SIGMOID_STEPWISE) --ann.set_training_algorithm(fann.FANN_TRAIN_INCREMENTAL) -+ann.set_activation_function_hidden(fann.SIGMOID_SYMMETRIC_STEPWISE) -+ann.set_activation_function_output(fann.SIGMOID_STEPWISE) -+ann.set_training_algorithm(fann.TRAIN_INCREMENTAL) - - ann.train_on_data(train_data, max_iterations, iterations_between_reports, desired_error) - -@@ -40,9 +40,3 @@ - print "Saving network" - ann.save("mushroom_float.net") - --# blow it all up --print "Cleaning up." --ann.destroy() --test_data.destroy() --train_data.destroy() -- -diff -N -u -r fann-1.2.0.orig/python/examples/simple_train.py fann-1.2.0.my/python/examples/simple_train.py ---- fann-1.2.0.orig/python/examples/simple_train.py 2004-07-24 01:35:58.000000000 +0200 -+++ fann-1.2.0.my/python/examples/simple_train.py 2005-01-03 20:48:01.000000000 +0100 -@@ -12,9 +12,9 @@ - iterations_between_reports = 1000 - - ann = fann.create(connection_rate, learning_rate, (num_input, num_neurons_hidden, num_output)) -+ann.set_activation_function_output(fann.SIGMOID_SYMMETRIC_STEPWISE) - - ann.train_on_file("datasets/xor.data", max_iterations, iterations_between_reports, desired_error) - - ann.save("xor_float.net") - --ann.destroy() -diff -N -u -r fann-1.2.0.orig/python/fann_helper.c fann-1.2.0.my/python/fann_helper.c ---- fann-1.2.0.orig/python/fann_helper.c 2004-07-26 09:52:30.000000000 +0200 -+++ fann-1.2.0.my/python/fann_helper.c 2005-01-03 22:13:09.000000000 +0100 -@@ -68,3 +68,8 @@ - return get_row_from_double_array(t->output, row, t->num_output);
- }
-
-+
-+int fann_is_NULL(struct fann *ann)
-+{
-+ return ann == NULL ? 1 : 0;
-+}
-diff -N -u -r fann-1.2.0.orig/python/fann.py fann-1.2.0.my/python/fann.py ---- fann-1.2.0.orig/python/fann.py 2004-07-26 09:46:04.000000000 +0200 -+++ fann-1.2.0.my/python/fann.py 2005-01-03 22:32:49.000000000 +0100 -@@ -21,30 +21,23 @@ - - import libfann - --# Activation function --FANN_LINEAR = 0 --FANN_THRESHOLD = 1 --FANN_THRESHOLD_SYMMETRIC = 2 --FANN_SIGMOID = 3 --FANN_SIGMOID_STEPWISE = 4 # default --FANN_SIGMOID_SYMMETRIC = 5 --FANN_SIGMOID_SYMMETRIC_STEPWISE = 6 --FANN_GAUSSIAN = 7 --FANN_GAUSSIAN_STEPWISE = 8 --FANN_ELLIOT = 9 # not implemented yet --FANN_ELLIOT_SYMMETRIC = 10 # not implemented yet -- --# Training algorithm --FANN_TRAIN_INCREMENTAL = 0 --FANN_TRAIN_BATCH = 1 --FANN_TRAIN_RPROP = 2 --FANN_TRAIN_QUICKPROP = 3 -+# import all FANN_ constants without FANN_ prefix -+for name, value in libfann.__dict__.iteritems(): -+ if name.startswith('FANN_') and not name.endswith('_NAMES'): -+ globals()[name[5:]] = value -+del name, value - - class fann_class: - - def __init__(self, ann): -+ """ -+ Never call this directly. -+ """ - self.__ann = ann -- -+ -+ def __del__(self): -+ libfann.fann_destroy(self.__ann) -+ - def get_native_object(self): - return self.__train_data - -@@ -54,13 +47,6 @@ - """ - return libfann.fann_run(self.__ann, input) - -- def destroy(self): -- """ -- Destructs the entire network. -- Be sure to call this function after finished using the network. -- """ -- libfann.fann_destroy(self.__ann) -- - def randomize_weights(self, min_weight, max_weight): - """ - Randomize weights (from the beginning the weights are random between -0.1 and 0.1) -@@ -198,31 +184,31 @@ - """ - libfann.fann_set_activation_function_output(self.__ann, activation_function) - -- def get_activation_hidden_steepness(self): -+ def get_activation_steepness_hidden(self): - """ - Get the steepness parameter for the sigmoid function used in the hidden layers. - """ -- return libfann.get_activation_hidden_steepness(self.__ann) -+ return libfann.get_activation_steepness_hidden(self.__ann) - -- def set_activation_hidden_steepness(self, steepness): -+ def set_activation_steepness_hidden(self, steepness): - """ - Set the steepness of the sigmoid function used in the hidden layers. - Only usefull if sigmoid function is used in the hidden layers (default 0.5). - """ -- libfann.fann_set_activation_hidden_steepness(self.__ann, steepness) -+ libfann.fann_set_activation_steepness_hidden(self.__ann, steepness) - -- def get_activation_output_steepness(self): -+ def get_activation_steepness_output(self): - """ - Get the steepness parameter for the sigmoid function used in the output layer. - """ -- return libfann.fann_get_activation_output_steepness(self.__ann) -+ return libfann.fann_get_activation_steepness_output(self.__ann) - -- def set_activation_output_steepness(self, steepness): -+ def set_activation_steepness_output(self, steepness): - """ - Set the steepness of the sigmoid function used in the output layer. - Only usefull if sigmoid function is used in the output layer (default 0.5). - """ -- libfann.fann_set_activation_output_steepness(self.__ann, steepness) -+ libfann.fann_set_activation_steepness_output(self.__ann, steepness) - - def train_on_data(self, data, max_epochs, epochs_between_reports, desired_error): - """ -@@ -269,7 +255,12 @@ - class train_class: - - def __init__(self, train_data): -+ """ -+ Never call this directly. -+ """ - self.__train_data = train_data -+ def __del__(self): -+ libfann.fann_destroy_train(self.__train_data) - - def get_native_object(self): - return self.__train_data -@@ -289,13 +280,6 @@ - def get_output(self, index): - return libfann.get_train_data_output(self.__train_data, index); - -- def destroy(self): -- """ -- Destructs the training data -- Be sure to call this function after finished using the training data. -- """ -- libfann.fann_destroy_train(self.__train_data) -- - def shuffle(self): - """ - Shuffles training data, randomizing the order -@@ -317,12 +301,10 @@ - - def merge(self, other): - """ -- Merges training data into a single struct -+ Merges training data into a new struct - """ - outcome = libfann.fann_merge_train_data(self.__train_data, other.get_native_object()) -- self.destroy() -- self.__train_data = outcome -- return self -+ return train_class(outcome) - - def duplicate(self): - """ -@@ -345,6 +327,8 @@ - When running the network, the bias nodes always emits 1 - """ - ann = libfann.fann_create_array(connection_rate, learning_rate, len(layers), layers) -+ if libfann.fann_is_NULL(ann): -+ return None # probably won't happen - return fann_class(ann) - - def create_from_file(filename): -@@ -352,6 +336,8 @@ - Constructs a backpropagation neural network from a configuration file. - """ - ann = libfann.fann_create_from_file(filename) -+ if libfann.fann_is_NULL(ann): -+ raise IOError, "Could not load ann from file '%s'" + filename - return fann_class(ann) - - def read_train_from_file(filename): -diff -N -u -r fann-1.2.0.orig/python/libfann.i fann-1.2.0.my/python/libfann.i ---- fann-1.2.0.orig/python/libfann.i 2004-07-20 00:21:20.000000000 +0200 -+++ fann-1.2.0.my/python/libfann.i 2005-01-03 22:58:56.000000000 +0100 -@@ -7,15 +7,16 @@ - #include "../src/include/fann.h"
- %}
-
--%typemap(in) fann_type[ANY] {
-+%define CHECKED_FLOAT_ARRAY(typemap_name, expected_length)
-+%typemap(in) typemap_name {
- int i;
- if (!PySequence_Check($input)) {
- PyErr_SetString(PyExc_ValueError,"Expected a sequence");
-- return NULL;
-+ SWIG_fail;
- }
-- if (PySequence_Length($input) == 0) {
-- PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected some elements");
-- return NULL;
-+ if (PySequence_Length($input) != expected_length) {
-+ PyErr_SetString(PyExc_ValueError,"Sequence has wrong length");
-+ SWIG_fail;
- }
- $1 = (float *) malloc(PySequence_Length($input)*sizeof(float));
- for (i = 0; i < PySequence_Length($input); i++) {
-@@ -24,20 +25,29 @@ - $1[i] = (float) PyFloat_AsDouble(o);
- } else {
- PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
-- return NULL;
-+ Py_DECREF(o);
-+ SWIG_fail;
- }
-+ Py_DECREF(o);
- }
- }
-+%typemap(freearg) typemap_name {
-+ if ($1) free($1);
-+}
-+%enddef
-+
-+CHECKED_FLOAT_ARRAY(fann_type *input, arg1->num_input)
-+CHECKED_FLOAT_ARRAY(fann_type *desired_output, arg1->num_output)
-
- %typemap(in) int[ANY] {
- int i;
- if (!PySequence_Check($input)) {
- PyErr_SetString(PyExc_ValueError,"Expected a sequence");
-- return NULL;
-+ SWIG_fail;
- }
- if (PySequence_Length($input) == 0) {
- PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected some elements");
-- return NULL;
-+ SWIG_fail;
- }
- $1 = (unsigned int *) malloc(PySequence_Length($input)*sizeof(unsigned int));
- for (i = 0; i < PySequence_Length($input); i++) {
-@@ -46,37 +56,41 @@ - $1[i] = (int) PyInt_AsLong(o);
- } else {
- PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
-- return NULL;
-+ Py_DECREF(o);
-+ SWIG_fail;
- }
-+ Py_DECREF(o);
- }
- }
--
--%typemap(freearg) fann_type* {
-+%typemap(freearg) int[ANY] {
- if ($1) free($1);
- }
-+%apply int[ANY] {int *, unsigned int*};
-+
-+typedef double fann_type;
-
- %typemap(out) PyObject* {
- $result = $1;
- }
-
--%apply fann_type[ANY] {fann_type *};
--%apply int[ANY] {int *, unsigned int*};
-+// create_array is used instead
-+%ignore fann_create;
-+%ignore fann_create_shortcut;
-
--#define FANN_INCLUDE
--%varargs(10,int n = 0) fann_create;
- %rename(fann_run_old) fann_run;
- %rename(fann_run) fann_run2;
-
- %rename(fann_test_old) fann_test;
- %rename(fann_test) fann_test2;
-
-+#define FANN_INCLUDE
- %include "../src/include/fann.h"
- %include "../src/include/fann_data.h"
-+%include "../src/include/fann_activation.h"
-
- // Helper functions
- PyObject* fann_run2(struct fann *ann, fann_type *input);
- PyObject* fann_test2(struct fann *ann, fann_type *input, fann_type *desired_output);
- PyObject* get_train_data_input(struct fann_train_data *ann, int row);
- PyObject* get_train_data_output(struct fann_train_data *ann, int row);
--
--
-+int fann_is_NULL(struct fann *ann);
-diff -N -u -r fann-1.2.0.orig/python/makefile.gnu fann-1.2.0.my/python/makefile.gnu ---- fann-1.2.0.orig/python/makefile.gnu 2004-10-09 13:56:57.000000000 +0200 -+++ fann-1.2.0.my/python/makefile.gnu 2005-01-02 16:52:23.000000000 +0100 -@@ -1,5 +1,7 @@ - # This makefile was written to compile a distribution of pyfann for - # GNU platforms (cygwin included.) -+# -+# This is NOT needed for Linux/Unix, use setup_unix.py instead. - - TARGETS = _libfann.dll - -diff -N -u -r fann-1.2.0.orig/python/README fann-1.2.0.my/python/README ---- fann-1.2.0.orig/python/README 2004-08-06 10:54:13.000000000 +0200 -+++ fann-1.2.0.my/python/README 2005-01-02 17:00:28.000000000 +0100 -@@ -1,6 +1,9 @@ - This python binding is provided by Vincenzo Di Massa <hawk.it@tiscalinet.it> - and Gil Megidish <gil@megidish.net> - -+Instructions for Windows: -+^^^^^^^^^^^^^^^^^^^^^^^^^ -+ - MAKE - Make sure to make the fann library first. You are required to have - swig and python development files installed. After you compiled the -@@ -24,3 +27,17 @@ - - USAGE - Just import fann. -+ -+Instructions for Unix/Linux: -+^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -+ -+First build and install the fann library. Then run: -+ -+./setup_unix.py build -+./setup_unix.py install -+ -+Install alone will work too, if you run it twice (a small bug). -+The examples/ (not installed) should work now after you copy the datasets: -+ -+mkdir examples/datasets -+cp ../examples/xor.data ../benchmarks/datasets/mushroom.* examples/datasets/ -diff -N -u -r fann-1.2.0.orig/python/setup.py fann-1.2.0.my/python/setup.py ---- fann-1.2.0.orig/python/setup.py 2004-07-26 09:56:59.000000000 +0200 -+++ fann-1.2.0.my/python/setup.py 2005-01-02 16:49:45.000000000 +0100 -@@ -22,7 +22,7 @@ - """
- override default distutils install_data, so we can copy
- files directly, without splitting into modules, scripts,
-- packages, and extensions."
-+ packages, and extensions.
- """
- def run(self):
- # need to change self.install_dir to the actual library dir
-diff -N -u -r fann-1.2.0.orig/python/setup_unix.py fann-1.2.0.my/python/setup_unix.py ---- fann-1.2.0.orig/python/setup_unix.py 1970-01-01 01:00:00.000000000 +0100 -+++ fann-1.2.0.my/python/setup_unix.py 2005-01-02 16:27:17.000000000 +0100 -@@ -0,0 +1,38 @@ -+#!/usr/bin/env python -+from distutils.core import setup, Extension -+#from glob import glob -+ -+VERSION='1.2.0' -+ -+LONG_DESCRIPTION="""\ -+Fast Artificial Neural Network Library implements multilayer -+artificial neural networks with support for both fully connected -+and sparsely connected networks. It includes a framework for easy -+handling of training data sets. It is easy to use, versatile, well -+documented, and fast. -+""" -+ -+module1 = Extension( -+ '_libfann', -+ sources = ['libfann.i', 'fann_helper.c'], -+ libraries = ['fann'], -+ #extra_objects = glob('../src/fann*.o'), -+ ) -+ -+setup( -+ name='pyfann', -+ version=VERSION, -+ description='Fast Artificial Neural Network Library (fann)', -+ long_description=LONG_DESCRIPTION, -+ author='Steffen Nissen', -+ author_email='lukesky@diku.dk', -+ maintainer='Gil Megidish', -+ maintainer_email='gil@megidish.net', -+ url='http://sourceforge.net/projects/fann/', -+ license='GNU LESSER GENERAL PUBLIC LICENSE (LGPL)', -+ platforms='UNIX', -+ -+ ext_modules = [module1], -+ py_modules = ['libfann', 'fann'] -+ ) -+ diff --git a/sci-mathematics/fann/files/fann-1.2.0-setup.py b/sci-mathematics/fann/files/fann-1.2.0-setup.py deleted file mode 100644 index 82e8e10f46ca..000000000000 --- a/sci-mathematics/fann/files/fann-1.2.0-setup.py +++ /dev/null @@ -1,46 +0,0 @@ -from distutils.core import setup, Extension
-from distutils.command.install_data import install_data
-from compiler.pycodegen import compileFile
-import glob
-import distutils
-import distutils.sysconfig
-import distutils.core
-import os
-
-DISTUTILS_DEBUG="True"
-
-VERSION='1.2.0'
-
-LONG_DESCRIPTION="""\
-Fast Artificial Neural Network Library implements multilayer
-artificial neural networks with support for both fully connected
-and sparsely connected networks. It includes a framework for easy
-handling of training data sets. It is easy to use, versatile, well
-documented, and fast.
-"""
-
-setup(
- name='pyfann',
- description='Fast Artificial Neural Network Library (fann)',
- long_description=LONG_DESCRIPTION,
- version=VERSION,
- author='Steffen Nissen',
- author_email='lukesky@diku.dk',
- maintainer='Gil Megidish',
- maintainer_email='gil@megidish.net',
- url='http://sourceforge.net/projects/fann/',
- license='GNU LESSER GENERAL PUBLIC LICENSE (LGPL)',
- # Description of the package in the distribution
- packages=['fann'],
- ext_package="fann",
- ext_modules=[
- Extension("_libfann", ["fann_helper.c","libfann.i"],
- include_dirs=["../src/include"],
- extra_link_args=['-L/usr/local/bin','-L/usr/bin','-L../src/include','-lpython2.3','-dll'],
- extra_objects=['/var/tmp/portage/fann-1.2.0/work/fann-1.2.0/src/fann_error.o',
- '../src/fann_io.o','../src/fann.o','../src/fann_options.o',
- '../src/fann_train_data.o','../src/fann_train.o'],
- )
- ],
- )
-
|