summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJustin Lecher <jlec@gentoo.org>2010-12-23 08:26:55 +0000
committerJustin Lecher <jlec@gentoo.org>2010-12-23 08:26:55 +0000
commit650e8818de572d98772e0c2949741c0ab4ba1e2a (patch)
treecc34c6b2b8640610cb49ebdc21b3b15fabd9d31b /sci-mathematics/fann/files
parentppc64 stable wrt #341703 (diff)
downloadgentoo-2-650e8818de572d98772e0c2949741c0ab4ba1e2a.tar.gz
gentoo-2-650e8818de572d98772e0c2949741c0ab4ba1e2a.tar.bz2
gentoo-2-650e8818de572d98772e0c2949741c0ab4ba1e2a.zip
Verify and potentially improve Python-related code, #316231; removed old patches
(Portage version: 2.2.0_alpha6/cvs/Linux x86_64)
Diffstat (limited to 'sci-mathematics/fann/files')
-rw-r--r--sci-mathematics/fann/files/fann-1.2.0-r1.patch417
-rw-r--r--sci-mathematics/fann/files/fann-1.2.0-setup.py46
2 files changed, 0 insertions, 463 deletions
diff --git a/sci-mathematics/fann/files/fann-1.2.0-r1.patch b/sci-mathematics/fann/files/fann-1.2.0-r1.patch
deleted file mode 100644
index 12aae86dad7e..000000000000
--- a/sci-mathematics/fann/files/fann-1.2.0-r1.patch
+++ /dev/null
@@ -1,417 +0,0 @@
-diff -N -u -r fann-1.2.0.orig/python/examples/mushroom.py fann-1.2.0.my/python/examples/mushroom.py
---- fann-1.2.0.orig/python/examples/mushroom.py 2004-07-24 01:36:04.000000000 +0200
-+++ fann-1.2.0.my/python/examples/mushroom.py 2005-01-03 20:48:21.000000000 +0100
-@@ -20,9 +20,9 @@
-
- # start training the network
- print "Training network"
--ann.set_activation_function_hidden(fann.FANN_SIGMOID_SYMMETRIC_STEPWISE)
--ann.set_activation_function_output(fann.FANN_SIGMOID_STEPWISE)
--ann.set_training_algorithm(fann.FANN_TRAIN_INCREMENTAL)
-+ann.set_activation_function_hidden(fann.SIGMOID_SYMMETRIC_STEPWISE)
-+ann.set_activation_function_output(fann.SIGMOID_STEPWISE)
-+ann.set_training_algorithm(fann.TRAIN_INCREMENTAL)
-
- ann.train_on_data(train_data, max_iterations, iterations_between_reports, desired_error)
-
-@@ -40,9 +40,3 @@
- print "Saving network"
- ann.save("mushroom_float.net")
-
--# blow it all up
--print "Cleaning up."
--ann.destroy()
--test_data.destroy()
--train_data.destroy()
--
-diff -N -u -r fann-1.2.0.orig/python/examples/simple_train.py fann-1.2.0.my/python/examples/simple_train.py
---- fann-1.2.0.orig/python/examples/simple_train.py 2004-07-24 01:35:58.000000000 +0200
-+++ fann-1.2.0.my/python/examples/simple_train.py 2005-01-03 20:48:01.000000000 +0100
-@@ -12,9 +12,9 @@
- iterations_between_reports = 1000
-
- ann = fann.create(connection_rate, learning_rate, (num_input, num_neurons_hidden, num_output))
-+ann.set_activation_function_output(fann.SIGMOID_SYMMETRIC_STEPWISE)
-
- ann.train_on_file("datasets/xor.data", max_iterations, iterations_between_reports, desired_error)
-
- ann.save("xor_float.net")
-
--ann.destroy()
-diff -N -u -r fann-1.2.0.orig/python/fann_helper.c fann-1.2.0.my/python/fann_helper.c
---- fann-1.2.0.orig/python/fann_helper.c 2004-07-26 09:52:30.000000000 +0200
-+++ fann-1.2.0.my/python/fann_helper.c 2005-01-03 22:13:09.000000000 +0100
-@@ -68,3 +68,8 @@
- return get_row_from_double_array(t->output, row, t->num_output);
- }
-
-+
-+int fann_is_NULL(struct fann *ann)
-+{
-+ return ann == NULL ? 1 : 0;
-+}
-diff -N -u -r fann-1.2.0.orig/python/fann.py fann-1.2.0.my/python/fann.py
---- fann-1.2.0.orig/python/fann.py 2004-07-26 09:46:04.000000000 +0200
-+++ fann-1.2.0.my/python/fann.py 2005-01-03 22:32:49.000000000 +0100
-@@ -21,30 +21,23 @@
-
- import libfann
-
--# Activation function
--FANN_LINEAR = 0
--FANN_THRESHOLD = 1
--FANN_THRESHOLD_SYMMETRIC = 2
--FANN_SIGMOID = 3
--FANN_SIGMOID_STEPWISE = 4 # default
--FANN_SIGMOID_SYMMETRIC = 5
--FANN_SIGMOID_SYMMETRIC_STEPWISE = 6
--FANN_GAUSSIAN = 7
--FANN_GAUSSIAN_STEPWISE = 8
--FANN_ELLIOT = 9 # not implemented yet
--FANN_ELLIOT_SYMMETRIC = 10 # not implemented yet
--
--# Training algorithm
--FANN_TRAIN_INCREMENTAL = 0
--FANN_TRAIN_BATCH = 1
--FANN_TRAIN_RPROP = 2
--FANN_TRAIN_QUICKPROP = 3
-+# import all FANN_ constants without FANN_ prefix
-+for name, value in libfann.__dict__.iteritems():
-+ if name.startswith('FANN_') and not name.endswith('_NAMES'):
-+ globals()[name[5:]] = value
-+del name, value
-
- class fann_class:
-
- def __init__(self, ann):
-+ """
-+ Never call this directly.
-+ """
- self.__ann = ann
--
-+
-+ def __del__(self):
-+ libfann.fann_destroy(self.__ann)
-+
- def get_native_object(self):
- return self.__train_data
-
-@@ -54,13 +47,6 @@
- """
- return libfann.fann_run(self.__ann, input)
-
-- def destroy(self):
-- """
-- Destructs the entire network.
-- Be sure to call this function after finished using the network.
-- """
-- libfann.fann_destroy(self.__ann)
--
- def randomize_weights(self, min_weight, max_weight):
- """
- Randomize weights (from the beginning the weights are random between -0.1 and 0.1)
-@@ -198,31 +184,31 @@
- """
- libfann.fann_set_activation_function_output(self.__ann, activation_function)
-
-- def get_activation_hidden_steepness(self):
-+ def get_activation_steepness_hidden(self):
- """
- Get the steepness parameter for the sigmoid function used in the hidden layers.
- """
-- return libfann.get_activation_hidden_steepness(self.__ann)
-+ return libfann.get_activation_steepness_hidden(self.__ann)
-
-- def set_activation_hidden_steepness(self, steepness):
-+ def set_activation_steepness_hidden(self, steepness):
- """
- Set the steepness of the sigmoid function used in the hidden layers.
- Only usefull if sigmoid function is used in the hidden layers (default 0.5).
- """
-- libfann.fann_set_activation_hidden_steepness(self.__ann, steepness)
-+ libfann.fann_set_activation_steepness_hidden(self.__ann, steepness)
-
-- def get_activation_output_steepness(self):
-+ def get_activation_steepness_output(self):
- """
- Get the steepness parameter for the sigmoid function used in the output layer.
- """
-- return libfann.fann_get_activation_output_steepness(self.__ann)
-+ return libfann.fann_get_activation_steepness_output(self.__ann)
-
-- def set_activation_output_steepness(self, steepness):
-+ def set_activation_steepness_output(self, steepness):
- """
- Set the steepness of the sigmoid function used in the output layer.
- Only usefull if sigmoid function is used in the output layer (default 0.5).
- """
-- libfann.fann_set_activation_output_steepness(self.__ann, steepness)
-+ libfann.fann_set_activation_steepness_output(self.__ann, steepness)
-
- def train_on_data(self, data, max_epochs, epochs_between_reports, desired_error):
- """
-@@ -269,7 +255,12 @@
- class train_class:
-
- def __init__(self, train_data):
-+ """
-+ Never call this directly.
-+ """
- self.__train_data = train_data
-+ def __del__(self):
-+ libfann.fann_destroy_train(self.__train_data)
-
- def get_native_object(self):
- return self.__train_data
-@@ -289,13 +280,6 @@
- def get_output(self, index):
- return libfann.get_train_data_output(self.__train_data, index);
-
-- def destroy(self):
-- """
-- Destructs the training data
-- Be sure to call this function after finished using the training data.
-- """
-- libfann.fann_destroy_train(self.__train_data)
--
- def shuffle(self):
- """
- Shuffles training data, randomizing the order
-@@ -317,12 +301,10 @@
-
- def merge(self, other):
- """
-- Merges training data into a single struct
-+ Merges training data into a new struct
- """
- outcome = libfann.fann_merge_train_data(self.__train_data, other.get_native_object())
-- self.destroy()
-- self.__train_data = outcome
-- return self
-+ return train_class(outcome)
-
- def duplicate(self):
- """
-@@ -345,6 +327,8 @@
- When running the network, the bias nodes always emits 1
- """
- ann = libfann.fann_create_array(connection_rate, learning_rate, len(layers), layers)
-+ if libfann.fann_is_NULL(ann):
-+ return None # probably won't happen
- return fann_class(ann)
-
- def create_from_file(filename):
-@@ -352,6 +336,8 @@
- Constructs a backpropagation neural network from a configuration file.
- """
- ann = libfann.fann_create_from_file(filename)
-+ if libfann.fann_is_NULL(ann):
-+ raise IOError, "Could not load ann from file '%s'" + filename
- return fann_class(ann)
-
- def read_train_from_file(filename):
-diff -N -u -r fann-1.2.0.orig/python/libfann.i fann-1.2.0.my/python/libfann.i
---- fann-1.2.0.orig/python/libfann.i 2004-07-20 00:21:20.000000000 +0200
-+++ fann-1.2.0.my/python/libfann.i 2005-01-03 22:58:56.000000000 +0100
-@@ -7,15 +7,16 @@
- #include "../src/include/fann.h"
- %}
-
--%typemap(in) fann_type[ANY] {
-+%define CHECKED_FLOAT_ARRAY(typemap_name, expected_length)
-+%typemap(in) typemap_name {
- int i;
- if (!PySequence_Check($input)) {
- PyErr_SetString(PyExc_ValueError,"Expected a sequence");
-- return NULL;
-+ SWIG_fail;
- }
-- if (PySequence_Length($input) == 0) {
-- PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected some elements");
-- return NULL;
-+ if (PySequence_Length($input) != expected_length) {
-+ PyErr_SetString(PyExc_ValueError,"Sequence has wrong length");
-+ SWIG_fail;
- }
- $1 = (float *) malloc(PySequence_Length($input)*sizeof(float));
- for (i = 0; i < PySequence_Length($input); i++) {
-@@ -24,20 +25,29 @@
- $1[i] = (float) PyFloat_AsDouble(o);
- } else {
- PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
-- return NULL;
-+ Py_DECREF(o);
-+ SWIG_fail;
- }
-+ Py_DECREF(o);
- }
- }
-+%typemap(freearg) typemap_name {
-+ if ($1) free($1);
-+}
-+%enddef
-+
-+CHECKED_FLOAT_ARRAY(fann_type *input, arg1->num_input)
-+CHECKED_FLOAT_ARRAY(fann_type *desired_output, arg1->num_output)
-
- %typemap(in) int[ANY] {
- int i;
- if (!PySequence_Check($input)) {
- PyErr_SetString(PyExc_ValueError,"Expected a sequence");
-- return NULL;
-+ SWIG_fail;
- }
- if (PySequence_Length($input) == 0) {
- PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected some elements");
-- return NULL;
-+ SWIG_fail;
- }
- $1 = (unsigned int *) malloc(PySequence_Length($input)*sizeof(unsigned int));
- for (i = 0; i < PySequence_Length($input); i++) {
-@@ -46,37 +56,41 @@
- $1[i] = (int) PyInt_AsLong(o);
- } else {
- PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
-- return NULL;
-+ Py_DECREF(o);
-+ SWIG_fail;
- }
-+ Py_DECREF(o);
- }
- }
--
--%typemap(freearg) fann_type* {
-+%typemap(freearg) int[ANY] {
- if ($1) free($1);
- }
-+%apply int[ANY] {int *, unsigned int*};
-+
-+typedef double fann_type;
-
- %typemap(out) PyObject* {
- $result = $1;
- }
-
--%apply fann_type[ANY] {fann_type *};
--%apply int[ANY] {int *, unsigned int*};
-+// create_array is used instead
-+%ignore fann_create;
-+%ignore fann_create_shortcut;
-
--#define FANN_INCLUDE
--%varargs(10,int n = 0) fann_create;
- %rename(fann_run_old) fann_run;
- %rename(fann_run) fann_run2;
-
- %rename(fann_test_old) fann_test;
- %rename(fann_test) fann_test2;
-
-+#define FANN_INCLUDE
- %include "../src/include/fann.h"
- %include "../src/include/fann_data.h"
-+%include "../src/include/fann_activation.h"
-
- // Helper functions
- PyObject* fann_run2(struct fann *ann, fann_type *input);
- PyObject* fann_test2(struct fann *ann, fann_type *input, fann_type *desired_output);
- PyObject* get_train_data_input(struct fann_train_data *ann, int row);
- PyObject* get_train_data_output(struct fann_train_data *ann, int row);
--
--
-+int fann_is_NULL(struct fann *ann);
-diff -N -u -r fann-1.2.0.orig/python/makefile.gnu fann-1.2.0.my/python/makefile.gnu
---- fann-1.2.0.orig/python/makefile.gnu 2004-10-09 13:56:57.000000000 +0200
-+++ fann-1.2.0.my/python/makefile.gnu 2005-01-02 16:52:23.000000000 +0100
-@@ -1,5 +1,7 @@
- # This makefile was written to compile a distribution of pyfann for
- # GNU platforms (cygwin included.)
-+#
-+# This is NOT needed for Linux/Unix, use setup_unix.py instead.
-
- TARGETS = _libfann.dll
-
-diff -N -u -r fann-1.2.0.orig/python/README fann-1.2.0.my/python/README
---- fann-1.2.0.orig/python/README 2004-08-06 10:54:13.000000000 +0200
-+++ fann-1.2.0.my/python/README 2005-01-02 17:00:28.000000000 +0100
-@@ -1,6 +1,9 @@
- This python binding is provided by Vincenzo Di Massa <hawk.it@tiscalinet.it>
- and Gil Megidish <gil@megidish.net>
-
-+Instructions for Windows:
-+^^^^^^^^^^^^^^^^^^^^^^^^^
-+
- MAKE
- Make sure to make the fann library first. You are required to have
- swig and python development files installed. After you compiled the
-@@ -24,3 +27,17 @@
-
- USAGE
- Just import fann.
-+
-+Instructions for Unix/Linux:
-+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-+
-+First build and install the fann library. Then run:
-+
-+./setup_unix.py build
-+./setup_unix.py install
-+
-+Install alone will work too, if you run it twice (a small bug).
-+The examples/ (not installed) should work now after you copy the datasets:
-+
-+mkdir examples/datasets
-+cp ../examples/xor.data ../benchmarks/datasets/mushroom.* examples/datasets/
-diff -N -u -r fann-1.2.0.orig/python/setup.py fann-1.2.0.my/python/setup.py
---- fann-1.2.0.orig/python/setup.py 2004-07-26 09:56:59.000000000 +0200
-+++ fann-1.2.0.my/python/setup.py 2005-01-02 16:49:45.000000000 +0100
-@@ -22,7 +22,7 @@
- """
- override default distutils install_data, so we can copy
- files directly, without splitting into modules, scripts,
-- packages, and extensions."
-+ packages, and extensions.
- """
- def run(self):
- # need to change self.install_dir to the actual library dir
-diff -N -u -r fann-1.2.0.orig/python/setup_unix.py fann-1.2.0.my/python/setup_unix.py
---- fann-1.2.0.orig/python/setup_unix.py 1970-01-01 01:00:00.000000000 +0100
-+++ fann-1.2.0.my/python/setup_unix.py 2005-01-02 16:27:17.000000000 +0100
-@@ -0,0 +1,38 @@
-+#!/usr/bin/env python
-+from distutils.core import setup, Extension
-+#from glob import glob
-+
-+VERSION='1.2.0'
-+
-+LONG_DESCRIPTION="""\
-+Fast Artificial Neural Network Library implements multilayer
-+artificial neural networks with support for both fully connected
-+and sparsely connected networks. It includes a framework for easy
-+handling of training data sets. It is easy to use, versatile, well
-+documented, and fast.
-+"""
-+
-+module1 = Extension(
-+ '_libfann',
-+ sources = ['libfann.i', 'fann_helper.c'],
-+ libraries = ['fann'],
-+ #extra_objects = glob('../src/fann*.o'),
-+ )
-+
-+setup(
-+ name='pyfann',
-+ version=VERSION,
-+ description='Fast Artificial Neural Network Library (fann)',
-+ long_description=LONG_DESCRIPTION,
-+ author='Steffen Nissen',
-+ author_email='lukesky@diku.dk',
-+ maintainer='Gil Megidish',
-+ maintainer_email='gil@megidish.net',
-+ url='http://sourceforge.net/projects/fann/',
-+ license='GNU LESSER GENERAL PUBLIC LICENSE (LGPL)',
-+ platforms='UNIX',
-+
-+ ext_modules = [module1],
-+ py_modules = ['libfann', 'fann']
-+ )
-+
diff --git a/sci-mathematics/fann/files/fann-1.2.0-setup.py b/sci-mathematics/fann/files/fann-1.2.0-setup.py
deleted file mode 100644
index 82e8e10f46ca..000000000000
--- a/sci-mathematics/fann/files/fann-1.2.0-setup.py
+++ /dev/null
@@ -1,46 +0,0 @@
-from distutils.core import setup, Extension
-from distutils.command.install_data import install_data
-from compiler.pycodegen import compileFile
-import glob
-import distutils
-import distutils.sysconfig
-import distutils.core
-import os
-
-DISTUTILS_DEBUG="True"
-
-VERSION='1.2.0'
-
-LONG_DESCRIPTION="""\
-Fast Artificial Neural Network Library implements multilayer
-artificial neural networks with support for both fully connected
-and sparsely connected networks. It includes a framework for easy
-handling of training data sets. It is easy to use, versatile, well
-documented, and fast.
-"""
-
-setup(
- name='pyfann',
- description='Fast Artificial Neural Network Library (fann)',
- long_description=LONG_DESCRIPTION,
- version=VERSION,
- author='Steffen Nissen',
- author_email='lukesky@diku.dk',
- maintainer='Gil Megidish',
- maintainer_email='gil@megidish.net',
- url='http://sourceforge.net/projects/fann/',
- license='GNU LESSER GENERAL PUBLIC LICENSE (LGPL)',
- # Description of the package in the distribution
- packages=['fann'],
- ext_package="fann",
- ext_modules=[
- Extension("_libfann", ["fann_helper.c","libfann.i"],
- include_dirs=["../src/include"],
- extra_link_args=['-L/usr/local/bin','-L/usr/bin','-L../src/include','-lpython2.3','-dll'],
- extra_objects=['/var/tmp/portage/fann-1.2.0/work/fann-1.2.0/src/fann_error.o',
- '../src/fann_io.o','../src/fann.o','../src/fann_options.o',
- '../src/fann_train_data.o','../src/fann_train.o'],
- )
- ],
- )
-