1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
|
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(math_ceil__doc__,
"ceil($module, x, /)\n"
"--\n"
"\n"
"Return the ceiling of x as an Integral.\n"
"\n"
"This is the smallest integer >= x.");
#define MATH_CEIL_METHODDEF \
{"ceil", (PyCFunction)math_ceil, METH_O, math_ceil__doc__},
PyDoc_STRVAR(math_floor__doc__,
"floor($module, x, /)\n"
"--\n"
"\n"
"Return the floor of x as an Integral.\n"
"\n"
"This is the largest integer <= x.");
#define MATH_FLOOR_METHODDEF \
{"floor", (PyCFunction)math_floor, METH_O, math_floor__doc__},
PyDoc_STRVAR(math_fsum__doc__,
"fsum($module, seq, /)\n"
"--\n"
"\n"
"Return an accurate floating point sum of values in the iterable seq.\n"
"\n"
"Assumes IEEE-754 floating point arithmetic.");
#define MATH_FSUM_METHODDEF \
{"fsum", (PyCFunction)math_fsum, METH_O, math_fsum__doc__},
PyDoc_STRVAR(math_isqrt__doc__,
"isqrt($module, n, /)\n"
"--\n"
"\n"
"Return the integer part of the square root of the input.");
#define MATH_ISQRT_METHODDEF \
{"isqrt", (PyCFunction)math_isqrt, METH_O, math_isqrt__doc__},
PyDoc_STRVAR(math_factorial__doc__,
"factorial($module, x, /)\n"
"--\n"
"\n"
"Find x!.\n"
"\n"
"Raise a ValueError if x is negative or non-integral.");
#define MATH_FACTORIAL_METHODDEF \
{"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__},
PyDoc_STRVAR(math_trunc__doc__,
"trunc($module, x, /)\n"
"--\n"
"\n"
"Truncates the Real x to the nearest Integral toward 0.\n"
"\n"
"Uses the __trunc__ magic method.");
#define MATH_TRUNC_METHODDEF \
{"trunc", (PyCFunction)math_trunc, METH_O, math_trunc__doc__},
PyDoc_STRVAR(math_frexp__doc__,
"frexp($module, x, /)\n"
"--\n"
"\n"
"Return the mantissa and exponent of x, as pair (m, e).\n"
"\n"
"m is a float and e is an int, such that x = m * 2.**e.\n"
"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
#define MATH_FREXP_METHODDEF \
{"frexp", (PyCFunction)math_frexp, METH_O, math_frexp__doc__},
static PyObject *
math_frexp_impl(PyObject *module, double x);
static PyObject *
math_frexp(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_frexp_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_ldexp__doc__,
"ldexp($module, x, i, /)\n"
"--\n"
"\n"
"Return x * (2**i).\n"
"\n"
"This is essentially the inverse of frexp().");
#define MATH_LDEXP_METHODDEF \
{"ldexp", (PyCFunction)(void(*)(void))math_ldexp, METH_FASTCALL, math_ldexp__doc__},
static PyObject *
math_ldexp_impl(PyObject *module, double x, PyObject *i);
static PyObject *
math_ldexp(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double x;
PyObject *i;
if (!_PyArg_CheckPositional("ldexp", nargs, 2, 2)) {
goto exit;
}
if (PyFloat_CheckExact(args[0])) {
x = PyFloat_AS_DOUBLE(args[0]);
}
else
{
x = PyFloat_AsDouble(args[0]);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
i = args[1];
return_value = math_ldexp_impl(module, x, i);
exit:
return return_value;
}
PyDoc_STRVAR(math_modf__doc__,
"modf($module, x, /)\n"
"--\n"
"\n"
"Return the fractional and integer parts of x.\n"
"\n"
"Both results carry the sign of x and are floats.");
#define MATH_MODF_METHODDEF \
{"modf", (PyCFunction)math_modf, METH_O, math_modf__doc__},
static PyObject *
math_modf_impl(PyObject *module, double x);
static PyObject *
math_modf(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_modf_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_log__doc__,
"log(x, [base=math.e])\n"
"Return the logarithm of x to the given base.\n"
"\n"
"If the base not specified, returns the natural logarithm (base e) of x.");
#define MATH_LOG_METHODDEF \
{"log", (PyCFunction)math_log, METH_VARARGS, math_log__doc__},
static PyObject *
math_log_impl(PyObject *module, PyObject *x, int group_right_1,
PyObject *base);
static PyObject *
math_log(PyObject *module, PyObject *args)
{
PyObject *return_value = NULL;
PyObject *x;
int group_right_1 = 0;
PyObject *base = NULL;
switch (PyTuple_GET_SIZE(args)) {
case 1:
if (!PyArg_ParseTuple(args, "O:log", &x)) {
goto exit;
}
break;
case 2:
if (!PyArg_ParseTuple(args, "OO:log", &x, &base)) {
goto exit;
}
group_right_1 = 1;
break;
default:
PyErr_SetString(PyExc_TypeError, "math.log requires 1 to 2 arguments");
goto exit;
}
return_value = math_log_impl(module, x, group_right_1, base);
exit:
return return_value;
}
PyDoc_STRVAR(math_log2__doc__,
"log2($module, x, /)\n"
"--\n"
"\n"
"Return the base 2 logarithm of x.");
#define MATH_LOG2_METHODDEF \
{"log2", (PyCFunction)math_log2, METH_O, math_log2__doc__},
PyDoc_STRVAR(math_log10__doc__,
"log10($module, x, /)\n"
"--\n"
"\n"
"Return the base 10 logarithm of x.");
#define MATH_LOG10_METHODDEF \
{"log10", (PyCFunction)math_log10, METH_O, math_log10__doc__},
PyDoc_STRVAR(math_fmod__doc__,
"fmod($module, x, y, /)\n"
"--\n"
"\n"
"Return fmod(x, y), according to platform C.\n"
"\n"
"x % y may differ.");
#define MATH_FMOD_METHODDEF \
{"fmod", (PyCFunction)(void(*)(void))math_fmod, METH_FASTCALL, math_fmod__doc__},
static PyObject *
math_fmod_impl(PyObject *module, double x, double y);
static PyObject *
math_fmod(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double x;
double y;
if (!_PyArg_CheckPositional("fmod", nargs, 2, 2)) {
goto exit;
}
if (PyFloat_CheckExact(args[0])) {
x = PyFloat_AS_DOUBLE(args[0]);
}
else
{
x = PyFloat_AsDouble(args[0]);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
if (PyFloat_CheckExact(args[1])) {
y = PyFloat_AS_DOUBLE(args[1]);
}
else
{
y = PyFloat_AsDouble(args[1]);
if (y == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_fmod_impl(module, x, y);
exit:
return return_value;
}
PyDoc_STRVAR(math_dist__doc__,
"dist($module, p, q, /)\n"
"--\n"
"\n"
"Return the Euclidean distance between two points p and q.\n"
"\n"
"The points should be specified as sequences (or iterables) of\n"
"coordinates. Both inputs must have the same dimension.\n"
"\n"
"Roughly equivalent to:\n"
" sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))");
#define MATH_DIST_METHODDEF \
{"dist", (PyCFunction)(void(*)(void))math_dist, METH_FASTCALL, math_dist__doc__},
static PyObject *
math_dist_impl(PyObject *module, PyObject *p, PyObject *q);
static PyObject *
math_dist(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *p;
PyObject *q;
if (!_PyArg_CheckPositional("dist", nargs, 2, 2)) {
goto exit;
}
p = args[0];
q = args[1];
return_value = math_dist_impl(module, p, q);
exit:
return return_value;
}
PyDoc_STRVAR(math_pow__doc__,
"pow($module, x, y, /)\n"
"--\n"
"\n"
"Return x**y (x to the power of y).");
#define MATH_POW_METHODDEF \
{"pow", (PyCFunction)(void(*)(void))math_pow, METH_FASTCALL, math_pow__doc__},
static PyObject *
math_pow_impl(PyObject *module, double x, double y);
static PyObject *
math_pow(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double x;
double y;
if (!_PyArg_CheckPositional("pow", nargs, 2, 2)) {
goto exit;
}
if (PyFloat_CheckExact(args[0])) {
x = PyFloat_AS_DOUBLE(args[0]);
}
else
{
x = PyFloat_AsDouble(args[0]);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
if (PyFloat_CheckExact(args[1])) {
y = PyFloat_AS_DOUBLE(args[1]);
}
else
{
y = PyFloat_AsDouble(args[1]);
if (y == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_pow_impl(module, x, y);
exit:
return return_value;
}
PyDoc_STRVAR(math_degrees__doc__,
"degrees($module, x, /)\n"
"--\n"
"\n"
"Convert angle x from radians to degrees.");
#define MATH_DEGREES_METHODDEF \
{"degrees", (PyCFunction)math_degrees, METH_O, math_degrees__doc__},
static PyObject *
math_degrees_impl(PyObject *module, double x);
static PyObject *
math_degrees(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_degrees_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_radians__doc__,
"radians($module, x, /)\n"
"--\n"
"\n"
"Convert angle x from degrees to radians.");
#define MATH_RADIANS_METHODDEF \
{"radians", (PyCFunction)math_radians, METH_O, math_radians__doc__},
static PyObject *
math_radians_impl(PyObject *module, double x);
static PyObject *
math_radians(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_radians_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_isfinite__doc__,
"isfinite($module, x, /)\n"
"--\n"
"\n"
"Return True if x is neither an infinity nor a NaN, and False otherwise.");
#define MATH_ISFINITE_METHODDEF \
{"isfinite", (PyCFunction)math_isfinite, METH_O, math_isfinite__doc__},
static PyObject *
math_isfinite_impl(PyObject *module, double x);
static PyObject *
math_isfinite(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_isfinite_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_isnan__doc__,
"isnan($module, x, /)\n"
"--\n"
"\n"
"Return True if x is a NaN (not a number), and False otherwise.");
#define MATH_ISNAN_METHODDEF \
{"isnan", (PyCFunction)math_isnan, METH_O, math_isnan__doc__},
static PyObject *
math_isnan_impl(PyObject *module, double x);
static PyObject *
math_isnan(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_isnan_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_isinf__doc__,
"isinf($module, x, /)\n"
"--\n"
"\n"
"Return True if x is a positive or negative infinity, and False otherwise.");
#define MATH_ISINF_METHODDEF \
{"isinf", (PyCFunction)math_isinf, METH_O, math_isinf__doc__},
static PyObject *
math_isinf_impl(PyObject *module, double x);
static PyObject *
math_isinf(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_isinf_impl(module, x);
exit:
return return_value;
}
PyDoc_STRVAR(math_isclose__doc__,
"isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n"
"--\n"
"\n"
"Determine whether two floating point numbers are close in value.\n"
"\n"
" rel_tol\n"
" maximum difference for being considered \"close\", relative to the\n"
" magnitude of the input values\n"
" abs_tol\n"
" maximum difference for being considered \"close\", regardless of the\n"
" magnitude of the input values\n"
"\n"
"Return True if a is close in value to b, and False otherwise.\n"
"\n"
"For the values to be considered close, the difference between them\n"
"must be smaller than at least one of the tolerances.\n"
"\n"
"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n"
"is, NaN is not close to anything, even itself. inf and -inf are\n"
"only close to themselves.");
#define MATH_ISCLOSE_METHODDEF \
{"isclose", (PyCFunction)(void(*)(void))math_isclose, METH_FASTCALL|METH_KEYWORDS, math_isclose__doc__},
static int
math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
double abs_tol);
static PyObject *
math_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
static _PyArg_Parser _parser = {NULL, _keywords, "isclose", 0};
PyObject *argsbuf[4];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
double a;
double b;
double rel_tol = 1e-09;
double abs_tol = 0.0;
int _return_value;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf);
if (!args) {
goto exit;
}
if (PyFloat_CheckExact(args[0])) {
a = PyFloat_AS_DOUBLE(args[0]);
}
else
{
a = PyFloat_AsDouble(args[0]);
if (a == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
if (PyFloat_CheckExact(args[1])) {
b = PyFloat_AS_DOUBLE(args[1]);
}
else
{
b = PyFloat_AsDouble(args[1]);
if (b == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
if (!noptargs) {
goto skip_optional_kwonly;
}
if (args[2]) {
if (PyFloat_CheckExact(args[2])) {
rel_tol = PyFloat_AS_DOUBLE(args[2]);
}
else
{
rel_tol = PyFloat_AsDouble(args[2]);
if (rel_tol == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
if (!--noptargs) {
goto skip_optional_kwonly;
}
}
if (PyFloat_CheckExact(args[3])) {
abs_tol = PyFloat_AS_DOUBLE(args[3]);
}
else
{
abs_tol = PyFloat_AsDouble(args[3]);
if (abs_tol == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
skip_optional_kwonly:
_return_value = math_isclose_impl(module, a, b, rel_tol, abs_tol);
if ((_return_value == -1) && PyErr_Occurred()) {
goto exit;
}
return_value = PyBool_FromLong((long)_return_value);
exit:
return return_value;
}
PyDoc_STRVAR(math_prod__doc__,
"prod($module, iterable, /, *, start=1)\n"
"--\n"
"\n"
"Calculate the product of all the elements in the input iterable.\n"
"\n"
"The default start value for the product is 1.\n"
"\n"
"When the iterable is empty, return the start value. This function is\n"
"intended specifically for use with numeric values and may reject\n"
"non-numeric types.");
#define MATH_PROD_METHODDEF \
{"prod", (PyCFunction)(void(*)(void))math_prod, METH_FASTCALL|METH_KEYWORDS, math_prod__doc__},
static PyObject *
math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start);
static PyObject *
math_prod(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"", "start", NULL};
static _PyArg_Parser _parser = {NULL, _keywords, "prod", 0};
PyObject *argsbuf[2];
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
PyObject *iterable;
PyObject *start = NULL;
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
if (!args) {
goto exit;
}
iterable = args[0];
if (!noptargs) {
goto skip_optional_kwonly;
}
start = args[1];
skip_optional_kwonly:
return_value = math_prod_impl(module, iterable, start);
exit:
return return_value;
}
PyDoc_STRVAR(math_perm__doc__,
"perm($module, n, k=None, /)\n"
"--\n"
"\n"
"Number of ways to choose k items from n items without repetition and with order.\n"
"\n"
"Evaluates to n! / (n - k)! when k <= n and evaluates\n"
"to zero when k > n.\n"
"\n"
"If k is not specified or is None, then k defaults to n\n"
"and the function returns n!.\n"
"\n"
"Raises TypeError if either of the arguments are not integers.\n"
"Raises ValueError if either of the arguments are negative.");
#define MATH_PERM_METHODDEF \
{"perm", (PyCFunction)(void(*)(void))math_perm, METH_FASTCALL, math_perm__doc__},
static PyObject *
math_perm_impl(PyObject *module, PyObject *n, PyObject *k);
static PyObject *
math_perm(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *n;
PyObject *k = Py_None;
if (!_PyArg_CheckPositional("perm", nargs, 1, 2)) {
goto exit;
}
n = args[0];
if (nargs < 2) {
goto skip_optional;
}
k = args[1];
skip_optional:
return_value = math_perm_impl(module, n, k);
exit:
return return_value;
}
PyDoc_STRVAR(math_comb__doc__,
"comb($module, n, k, /)\n"
"--\n"
"\n"
"Number of ways to choose k items from n items without repetition and without order.\n"
"\n"
"Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates\n"
"to zero when k > n.\n"
"\n"
"Also called the binomial coefficient because it is equivalent\n"
"to the coefficient of k-th term in polynomial expansion of the\n"
"expression (1 + x)**n.\n"
"\n"
"Raises TypeError if either of the arguments are not integers.\n"
"Raises ValueError if either of the arguments are negative.");
#define MATH_COMB_METHODDEF \
{"comb", (PyCFunction)(void(*)(void))math_comb, METH_FASTCALL, math_comb__doc__},
static PyObject *
math_comb_impl(PyObject *module, PyObject *n, PyObject *k);
static PyObject *
math_comb(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *n;
PyObject *k;
if (!_PyArg_CheckPositional("comb", nargs, 2, 2)) {
goto exit;
}
n = args[0];
k = args[1];
return_value = math_comb_impl(module, n, k);
exit:
return return_value;
}
PyDoc_STRVAR(math_nextafter__doc__,
"nextafter($module, x, y, /)\n"
"--\n"
"\n"
"Return the next floating-point value after x towards y.");
#define MATH_NEXTAFTER_METHODDEF \
{"nextafter", (PyCFunction)(void(*)(void))math_nextafter, METH_FASTCALL, math_nextafter__doc__},
static PyObject *
math_nextafter_impl(PyObject *module, double x, double y);
static PyObject *
math_nextafter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double x;
double y;
if (!_PyArg_CheckPositional("nextafter", nargs, 2, 2)) {
goto exit;
}
if (PyFloat_CheckExact(args[0])) {
x = PyFloat_AS_DOUBLE(args[0]);
}
else
{
x = PyFloat_AsDouble(args[0]);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
if (PyFloat_CheckExact(args[1])) {
y = PyFloat_AS_DOUBLE(args[1]);
}
else
{
y = PyFloat_AsDouble(args[1]);
if (y == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
return_value = math_nextafter_impl(module, x, y);
exit:
return return_value;
}
PyDoc_STRVAR(math_ulp__doc__,
"ulp($module, x, /)\n"
"--\n"
"\n"
"Return the value of the least significant bit of the float x.");
#define MATH_ULP_METHODDEF \
{"ulp", (PyCFunction)math_ulp, METH_O, math_ulp__doc__},
static double
math_ulp_impl(PyObject *module, double x);
static PyObject *
math_ulp(PyObject *module, PyObject *arg)
{
PyObject *return_value = NULL;
double x;
double _return_value;
if (PyFloat_CheckExact(arg)) {
x = PyFloat_AS_DOUBLE(arg);
}
else
{
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
goto exit;
}
}
_return_value = math_ulp_impl(module, x);
if ((_return_value == -1.0) && PyErr_Occurred()) {
goto exit;
}
return_value = PyFloat_FromDouble(_return_value);
exit:
return return_value;
}
/*[clinic end generated code: output=1eae2b3ef19568fa input=a9049054013a1b77]*/
|