aboutsummaryrefslogtreecommitdiff
blob: 73f9642a2197f38d5d494045403e68e48b874449 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i386-unknown-linux-gnu -mattr=sse2 | FileCheck %s

; Source file looks something like this:
;
; typedef int AAA[100][100];
;
; void testCombineMultiplies(AAA a,int lll)
; {
;   int LOC = lll + 5;
;
;   a[LOC][LOC] = 11;
;
;   a[LOC][20] = 22;
;   a[LOC+20][20] = 33;
; }
;
; We want to make sure we don't generate 2 multiply instructions,
; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
; should combine the instructions in such a way to avoid the extra
; multiply.
;
; Output looks roughly like this:
;
;	movl	8(%esp), %eax
;	movl	12(%esp), %ecx
;	imull	$400, %ecx, %edx        # imm = 0x190
;	leal	(%edx,%eax), %esi
;	movl	$11, 2020(%esi,%ecx,4)
;	movl	$22, 2080(%edx,%eax)
;	movl	$33, 10080(%edx,%eax)

; Function Attrs: nounwind
define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) nounwind {
; CHECK-LABEL: testCombineMultiplies:
; CHECK:       # %bb.0: # %entry
; CHECK-NEXT:    pushl %esi
; CHECK-NEXT:    movl {{[0-9]+}}(%esp), %eax
; CHECK-NEXT:    movl {{[0-9]+}}(%esp), %ecx
; CHECK-NEXT:    imull $400, %ecx, %edx # imm = 0x190
; CHECK-NEXT:    leal (%edx,%eax), %esi
; CHECK-NEXT:    movl $11, 2020(%esi,%ecx,4)
; CHECK-NEXT:    movl $22, 2080(%edx,%eax)
; CHECK-NEXT:    movl $33, 10080(%edx,%eax)
; CHECK-NEXT:    popl %esi
; CHECK-NEXT:    retl
entry:
  %add = add nsw i32 %lll, 5
  %arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
  store i32 11, i32* %arrayidx1, align 4
  %arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
  store i32 22, i32* %arrayidx3, align 4
  %add4 = add nsw i32 %lll, 25
  %arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
  store i32 33, i32* %arrayidx6, align 4
  ret void
}


; Test for the same optimization on vector multiplies.
;
; Source looks something like this:
;
; typedef int v4int __attribute__((__vector_size__(16)));
;
; v4int x;
; v4int v2, v3;
; void testCombineMultiplies_splat(v4int v1) {
;   v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
;   v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
;   x = (v1 + (v4int){ 11, 11, 11, 11 });
; }
;
; Output looks something like this:
;
; testCombineMultiplies_splat:                              # @testCombineMultiplies_splat
; # %bb.0:                                 # %entry
; 	movdqa	.LCPI1_0, %xmm1         # xmm1 = [11,11,11,11]
; 	paddd	%xmm0, %xmm1
; 	movdqa	.LCPI1_1, %xmm2         # xmm2 = [22,22,22,22]
; 	pshufd	$245, %xmm0, %xmm3      # xmm3 = xmm0[1,1,3,3]
; 	pmuludq	%xmm2, %xmm0
; 	pshufd	$232, %xmm0, %xmm0      # xmm0 = xmm0[0,2,2,3]
; 	pmuludq	%xmm2, %xmm3
; 	pshufd	$232, %xmm3, %xmm2      # xmm2 = xmm3[0,2,2,3]
; 	punpckldq	%xmm2, %xmm0    # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; 	movdqa	.LCPI1_2, %xmm2         # xmm2 = [242,242,242,242]
;	paddd	%xmm0, %xmm2
;	paddd	.LCPI1_3, %xmm0
;	movdqa	%xmm2, v2
;	movdqa	%xmm0, v3
;	movdqa	%xmm1, x
;	retl
;
; Again, we want to make sure we don't generate two different multiplies.
; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
; pmuludq instructions), followed by two adds. Without this optimization, we'd
; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).

@v2 = common global <4 x i32> zeroinitializer, align 16
@v3 = common global <4 x i32> zeroinitializer, align 16
@x = common global <4 x i32> zeroinitializer, align 16

; Function Attrs: nounwind
define void @testCombineMultiplies_splat(<4 x i32> %v1) nounwind {
; CHECK-LABEL: testCombineMultiplies_splat:
; CHECK:       # %bb.0: # %entry
; CHECK-NEXT:    movdqa {{.*#+}} xmm1 = [11,11,11,11]
; CHECK-NEXT:    paddd %xmm0, %xmm1
; CHECK-NEXT:    movdqa {{.*#+}} xmm2 = [22,22,22,22]
; CHECK-NEXT:    pshufd {{.*#+}} xmm3 = xmm0[1,1,3,3]
; CHECK-NEXT:    pmuludq %xmm2, %xmm0
; CHECK-NEXT:    pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; CHECK-NEXT:    pmuludq %xmm2, %xmm3
; CHECK-NEXT:    pshufd {{.*#+}} xmm2 = xmm3[0,2,2,3]
; CHECK-NEXT:    punpckldq {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; CHECK-NEXT:    movdqa {{.*#+}} xmm2 = [242,242,242,242]
; CHECK-NEXT:    paddd %xmm0, %xmm2
; CHECK-NEXT:    paddd {{\.LCPI[0-9]+_[0-9]+}}, %xmm0
; CHECK-NEXT:    movdqa %xmm2, v2
; CHECK-NEXT:    movdqa %xmm0, v3
; CHECK-NEXT:    movdqa %xmm1, x
; CHECK-NEXT:    retl
entry:
  %add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
  %mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
  %add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
  %mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
  store <4 x i32> %mul1, <4 x i32>* @v2, align 16
  store <4 x i32> %mul2, <4 x i32>* @v3, align 16
  store <4 x i32> %add1, <4 x i32>* @x, align 16
  ret void
}

; Finally, check the non-splatted vector case. This is very similar
; to the previous test case, except for the vector values.

; Function Attrs: nounwind
define void @testCombineMultiplies_non_splat(<4 x i32> %v1) nounwind {
; CHECK-LABEL: testCombineMultiplies_non_splat:
; CHECK:       # %bb.0: # %entry
; CHECK-NEXT:    movdqa {{.*#+}} xmm1 = [11,22,33,44]
; CHECK-NEXT:    paddd %xmm0, %xmm1
; CHECK-NEXT:    movdqa {{.*#+}} xmm2 = [22,33,44,55]
; CHECK-NEXT:    pshufd {{.*#+}} xmm3 = xmm0[1,1,3,3]
; CHECK-NEXT:    pmuludq %xmm2, %xmm0
; CHECK-NEXT:    pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; CHECK-NEXT:    pshufd {{.*#+}} xmm2 = xmm2[1,1,3,3]
; CHECK-NEXT:    pmuludq %xmm3, %xmm2
; CHECK-NEXT:    pshufd {{.*#+}} xmm2 = xmm2[0,2,2,3]
; CHECK-NEXT:    punpckldq {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; CHECK-NEXT:    movdqa {{.*#+}} xmm2 = [242,726,1452,2420]
; CHECK-NEXT:    paddd %xmm0, %xmm2
; CHECK-NEXT:    paddd {{\.LCPI[0-9]+_[0-9]+}}, %xmm0
; CHECK-NEXT:    movdqa %xmm2, v2
; CHECK-NEXT:    movdqa %xmm0, v3
; CHECK-NEXT:    movdqa %xmm1, x
; CHECK-NEXT:    retl
entry:
  %add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
  %mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
  %add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
  %mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
  store <4 x i32> %mul1, <4 x i32>* @v2, align 16
  store <4 x i32> %mul2, <4 x i32>* @v3, align 16
  store <4 x i32> %add1, <4 x i32>* @x, align 16
  ret void
}